洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
又学会了一个新东西好开心呢~
思路
显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上。
不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大小,圆点权值记为-1,那么\(x \rightarrow y\)的答案就是树上\(x\rightarrow y\)的路径权值和。
直接枚举\(O(n^2)\),点分治\(O(n\log n)\),考虑每个点被经过的次数乘上它的权值即可\(O(n)\)。
注意图可能不连通。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 202020
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__Z=0;
inline void __Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if (__C>1<<20) __Ot(); if (x<0) __sr[++__C]='-',x=-x;
while (__z[++__Z]=x%10+48,x/=10);
while (__sr[++__C]=__z[__Z],--__Z);__sr[++__C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n,m,N;
ll w[sz];
struct hh{int t,nxt;}edge[sz<<2];
int head[sz],ecnt;
void make_edge(int f,int t)
{
edge[++ecnt]=(hh){t,head[f]};
head[f]=ecnt;
edge[++ecnt]=(hh){f,head[t]};
head[t]=ecnt;
}
namespace BuildTree
{
struct hh{int t,nxt;}edge[sz<<1];
int head[sz],ecnt;
void make_edge(int f,int t)
{
edge[++ecnt]=(hh){t,head[f]};
head[f]=ecnt;
edge[++ecnt]=(hh){f,head[t]};
head[t]=ecnt;
}
int dfn[sz],low[sz],cnt;
stack<int>s;
bool in[sz];
#define v edge[i].t
void tarjan(int x,int fa)
{
dfn[x]=low[x]=++cnt;in[x]=1;s.push(x);w[x]=-1;
go(x) if (v!=fa)
{
if (!dfn[v])
{
tarjan(v,x),chkmin(low[x],low[v]);
if (low[v]>=dfn[x])
{
++N;w[N]=1;::make_edge(x,N);
int y;
do{y=s.top();s.pop();in[y]=0;::make_edge(y,N);++w[N];}while (y!=v);
}
}
else if (in[v]) chkmin(low[x],dfn[v]);
}
}
#undef v
void init()
{
read(n,m);
int x,y;
rep(i,1,m) read(x,y),make_edge(x,y);
N=n;
rep(i,1,n) if (!dfn[i]) tarjan(i,0);
}
}
ll ans=0;
int size[sz];
vector<int>rt;
bool vis[sz];
#define v edge[i].t
void dfs1(int x,int fa)
{
if (x<=n) size[x]=1;
vis[x]=1;
go(x) if (v!=fa)
{
dfs1(v,x);
size[x]+=size[v];
}
}
int S;
void dfs2(int x,int fa)
{
if (x<=n) size[x]=1; else size[x]=0;
ll cnt=0;
go(x) if (v!=fa)
{
dfs2(v,x);
cnt+=1ll*size[x]*size[v];
size[x]+=size[v];
}
cnt+=1ll*size[x]*(S-size[x]);
ans+=2ll*cnt*w[x];
}
#undef v
int main()
{
file();
BuildTree::init();
rep(i,1,N) if (!vis[i]) dfs1(i,0),rt.push_back(i);
for (int x:rt) S=size[x],dfs2(x,0);
cout<<ans;
return 0;
}
洛谷P4630 [APIO2018]铁人两项 [广义圆方树]的更多相关文章
- LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...
- [APIO2018]铁人两项(圆方树)
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...
- 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...
- 【APIO2018】铁人两项(圆方树,动态规划)
[APIO2018]铁人两项(圆方树,动态规划) 题面 UOJ 洛谷 BZOJ 题解 嘤嘤嘤,APIO的时候把一个组合数写成阶乘了,然后这题的70多分没拿到 首先一棵树是很容易做的,随意指定起点终点就 ...
- 洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】
题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双 ...
- 洛谷P4630 [APIO2018] Duathlon 铁人两项 (圆方树)
圆方树大致理解:将每个点双看做一个新建的点(方点),该点双内的所有点(圆点)都向新建的点连边,最后形成一棵树,可以给点赋予点权,用以解决相关路径问题. 在本题中,方点点权赋值为该点双的大小,因为两个点 ...
- Solution -「APIO 2018」「洛谷 P4630」铁人两项
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的无向图(不保证联通),求有序三元点对 \((s,c,f)\) 的个数,满足 \(s ...
- 洛谷4630APIO2018铁人两项(圆方树+dp)
QWQ神仙题啊(据说是今年第一次出现圆方树的地方) 首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决... 这时候考虑圆方树,我 ...
- 【APIO 2018】铁人两项(圆方树)
题目链接 题意大概是,求有多少三元组$(s,c,f)(s \neq c, c \neq f, s \neq f)$,满足从$s$到$f$有一条简单路径经过$c$. 得到结论: 点双中任意互不相同的三个 ...
随机推荐
- 31.【微服务架构】SpringCloud之Feign(五)
Feign简介 Feign 是一个声明web服务客户端,这便得编写web服务客户端更容易,使用Feign 创建一个接口并对它进行注解,它具有可插拔的注解支持包括Feign注解与JAX-RS注解,Fei ...
- ****** 四十二 ******、软设笔记【网络基础】-IPv6协议、常用的网络协议
一.IPv6协议 IPv6协议,全称"互联网协议第6版",即下一代的网际协议. 相对于IPv4来说,IPv6协议主要改进: *扩展的地址.IPv6地址长度为128位. *IPv6使 ...
- window中安装mongodb
转自:https://blog.csdn.net/heshushun/article/details/77776706 一.先登录Mongodb官网https://www.mongodb.com/do ...
- /*+ hint*/用法,该如何解决
/*+ use_hash(b, a)*/用法SELECT /*+ use_hash(b, a)*/ 1, NVL(b.AgentWorkGroup, ' '), ................ ...
- LightOJ - 1245 Harmonic Number (II) 求同值区间的和
题目大意:对下列代码进行优化 long long H( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) ...
- flask 连接数据库
FLASK 连接mysql 数据库 1 # -*- encoding: utf-8 -*- 2 3 from flask import Flask 4 #导入第三方连接库 5 from flask_s ...
- pythonの连接MySQL数据库
1.要确保开发环境中安装了pymsql,如果没有安装那么在控制台输入: pip3 install pymysql 安装完成后,打开编辑器: #!/usr/bin/env python import p ...
- SpringSecurity实现记住我功能
⒈表单添加 <form action="/authentication/form" method="post"> <table> < ...
- bootstrap模态框显示时被遮罩层遮住了
<style>.modal-backdrop{z-index:0;}</style>
- requests库入门06-post请求
示例相应的接口文档:GitHub邮箱接口文档 先登录GitHub,然后右上角用户下拉框中选择settings,然后选Emails.可以看到当前账户设置的邮箱情况 再看添加邮箱接口的文档描述,可以通过一 ...