<题目链接>

题目大意:

  给你一个连通的无向图,问你删除每一条边后,是否能够出现一对(u,v),使得u,v不连通,且u<v,如果有多对u,v,则输出尽量大的u,和尽量小的v。

解题分析:
  首先要明确,因为该图是连通的无向图,所以删除的边是桥才能够使至少两点不连通。但是对于删除桥的情况,如何输出尽可能大的u和尽可能小的v呢?

  我们要知道,删除一个桥,是将整张图分成两部分,这两部分的点仍然是连通的,并且,由于题目要求u<v,且u尽可能的大,v尽可能的小,所以,我们可以推断出,u与n一定不在同一部分,并且u是它所属部分的最大值,同时由于所有点的序号是连续的,u是那一部分的最大值,所以v的值一定是u+1。所以本题的目标就已经很明确了,就是先对每个点双连通分量进行缩点,并且维护每个连通分量的最大值。最后寻找u值得时候,就直接用DFS寻找不含n点的部分的最大值即可。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1e5+;
#define clr(a,b) memset(a,b,sizeof(a))
struct Edge{
int to,next;
bool vis,bridge;
Edge(){}
Edge(int _to,int _next):to(_to),next(_next){vis=false;bridge=false;}
}e[MAXN<<];
int times,n,m,top,bcc,tot;
int dfn[MAXN],low[MAXN],pre[MAXN],head[MAXN],stk[MAXN],belong[MAXN],res[MAXN];
void init(){
top=times=bcc=tot=;
clr(head,-);clr(dfn,);clr(low,);clr(belong,);clr(pre,);
}
void addedge(int u,int v){
e[tot]=Edge(v,head[u]);head[u]=tot++;
e[tot]=Edge(u,head[v]);head[v]=tot++;
}
void Tarjan(int u){
dfn[u]=low[u]=++times;
stk[++top]=u;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].to;
if(e[i].vis)continue;
e[i].vis=e[i^].vis=true; //将正反边全部标记
if(!dfn[v]){
pre[v]=u; //记录下父亲节点
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!belong[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
bcc++;
res[bcc]=-; //进行初始化
belong[u]=bcc;
while(true){
int v = stk[top--];
belong[v]=bcc;
res[bcc]=max(res[bcc],v); //维护连通分量中的最大值
if(v==u)break;
}
}
}
Edge edg[MAXN*];
int dep[MAXN],val[MAXN],head1[MAXN],tot1;
void init1(){
tot1=;
clr(head1,-);clr(dep,);
}
void AddEdge(int u,int v){
edg[tot1]=Edge(v,head1[u]);head1[u]=tot1++;
edg[tot1]=Edge(u,head1[v]);head1[v]=tot1++;
}
void dfs(int u,int d){ //得到以u为根的子树中编号最大的节点,并且得到每个节点的深度
dep[u]=d;
val[u]=res[u];
for(int i=head1[u];~i;i=edg[i].next){
int v=edg[i].to;
if(!dep[v]){
dfs(v,d+);
val[u]=max(val[u],val[v]); //val[u]为以u为根的子树中最大的编号
}
}
}
void solve(){
Tarjan();
for(int i=;i<tot;i++){ //遍历所有的边
if(e[i].bridge)continue;
int u=e[i].to,v=e[i^].to;
if(pre[v]==u&&dfn[u]<low[v]){ //如果u为v的父亲,且dfn[u]<low[v],说明u、v之间为桥
e[i].bridge=e[i^].bridge=true; //标记该边是否为桥
}
}
init1(); //为缩点后重新构图进行初始化
for(int i=;i<tot;i+=){
int u=e[i].to,v=e[i^].to;
if(belong[u]!=belong[v]){
AddEdge(belong[u],belong[v]); //缩点后进行重新构图
}
}
dfs(belong[n],); //以包含n的点双连通分量为树根
for(int i=;i<tot;i+=){
int u=e[i].to,v=e[i^].to;
if(e[i].bridge){ //因为肯定是两边中深度更浅的节点为根的子树中包含n节点,所以直接输出以深度更深的节点为根的最大值和这个最大值+1(这个最大值相当于是u,因为v>u,并且v要最小所以v为u+1)
if(dep[belong[u]]>dep[belong[v]])printf("%d %d\n",val[belong[u]],val[belong[u]]+);
else printf("%d %d\n",val[belong[v]],val[belong[v]]+);
}
else printf("0 0\n"); //如果不是桥,则输出0 0
}
}
int main(){
int T;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
init();
for(int i=,x,y;i<m;i++){
scanf("%d%d",&x,&y);
addedge(x,y);
}
solve();
}
return ;
}

2018-12-04

HDU 5409 CRB and Graph 【点双连通+DFS】的更多相关文章

  1. hdu 5409 CRB and Graph(边双联通分量)

    题意: 给一个图一些边,保证图连通 问对于每条边,如果去除该边后使得图中一些点不连通.设这些点(u,v),要求使u尽量小,v尽量大,输出这样的(u,v).否则输出0 0. #include <b ...

  2. HDOJ 5409 CRB and Graph 无向图缩块

    无向图缩块后,以n所在的块为根节点,dp找每块中的最大值. 对于每一个桥的答案为两块中的较小的最大值和较小的最大值加1 CRB and Graph Time Limit: 8000/4000 MS ( ...

  3. 【HDU5409】CRB and Graph 边双联通 子树最值

    HDU # 题意 有一个简单图,n个点,m条边.对于每条割边,求出删去这条边后,在两个联通块中各取一个u,v.使得u<v,并且u尽量大而v尽量小. # 思路 求出边双联通是肯定的. 答案的限制条 ...

  4. HDU 4005 The war(边双连通)

    题意 ​ 给定一张 \(n\) 个点 \(m\) 条边的无向连通图,加入一条边,使得图中权值最小的桥权值最大,如果能使图中没有桥则输出 \(-1\). 思路 ​ 先对原图边双缩点,然后变成了一棵树.在 ...

  5. HDU 5416 CRB and Tree(前缀思想+DFS)

    CRB and Tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  6. HDU 2460 Network(双连通+树链剖分+线段树)

    HDU 2460 Network 题目链接 题意:给定一个无向图,问每次增加一条边,问个图中还剩多少桥 思路:先双连通缩点,然后形成一棵树,每次增加一条边,相当于询问这两点路径上有多少条边,这个用树链 ...

  7. HDU 3849 By Recognizing These Guys, We Find Social Networks Useful(双连通)

    HDU 3849 By Recognizing These Guys, We Find Social Networks Useful pid=3849" target="_blan ...

  8. HDU 4005 The war(双连通好题)

    HDU 4005 The war pid=4005" target="_blank" style="">题目链接 题意:给一个连通的无向图.每条 ...

  9. hdu 4612 Warm up 双连通缩点+树的直径

    首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...

随机推荐

  1. WebSocket异步通讯,实时返回数据相关问题论坛

    https://stackoverflow.com/questions/23773407/a-websockets-receiveasync-method-does-not-await-the-ent ...

  2. 银联支付java版

    注:本文来源于:<  银联支付java版    > 银联支付java版 2016年09月18日 15:55:20 阅读数:2431 首先去银联官网注册测试支付账户   下载对应的demo[ ...

  3. Confluence 6 管理协同编辑 - 审计的考虑

    我们知道一些客户对审计是主要考虑的方面.我们不能保证在协同编辑的时候具有审计,审查功能.所有页面的修改当前附加到用户发布页面的属性中而不是用户的特定修改. 如果这个对你来说是一个问题的话,我们建议你在 ...

  4. Confluence 6 指定日志选项和已知问题

    指定 Confluence 日志选项 这里是一些特定的日志配置,你可能在对问题进行调试的时候需要. 在日志中记录数据库使用的 SQL 查询请求 你可能希望增加日志的中的内容,记录 Confluence ...

  5. Confluence 6 MySQL 创建数据库和数据库用户

    一旦你成功的安装和配置了 MySQL 数据库服务器,你需要为你的 Confluence 创建数据库和数据库用户: 在 MySQL 中以超级用户运行 'mysql' .默认的用户为 'root' 同时密 ...

  6. Confluence 6 CSS 编辑快速入门

    希望编辑空间的 CSS 样式表: 进入空间后,然后从边栏的底部选择 空间工具(Space tools) > 外观和感觉(Look and Feel) . 然后选择 样式表(Stylesheet) ...

  7. 前端图片缓存之通过img标签加载GIF只能播放一次问题(转载)

    最近项目中要求再网页中插入一张gif图片,让用户每次到达该位置时动一次,所以我们就制作了一张只动一次的gif图片通过img标签引入.当用户进入该位置时,通过remove()清除图片然后重新append ...

  8. phpstudy添加redis扩展

    操作系统   windows: 直接贴步骤记录下 一.      划重点,运行phpinfo(), 观察第四行 x86  好了记住这个 x86 三.    http://pecl.php.net/pa ...

  9. 广工赛-hdu6468构造十叉树

    是个以前没见过的模板题.. 我用比较复杂度方式过掉了.. 构造一个十叉树(有点trie的味道)来存数字,然后字典序就是先序遍历的结果 #include<bits/stdc++.h> usi ...

  10. Oracle unusable index 与unvisible index

    1 可见性 索引的可见性(visibility)指的是该索引是否对CBO优化器可见,即CBO优化器在生成执行计划的时候是否考虑该索引,可以看作是索引的一个属性.如果一个索引可见性属性为:invisib ...