MATLAB求马氏距离(Mahalanobis distance)

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1.马氏距离计算公式

d2(xi, xj)=(xi-xj)TS-1(xi-xj)

其中,S是总体的协方差矩阵,而不是样本的协方差矩阵。

2.matlab中现有的函数

>> x=[155 66;180 71;190 73;160 60;190 68;150 58;170 75]

x =

   155    66
180 71
190 73
160 60
190 68
150 58
170 75 >> Y = pdist(x,'mahal') Y = Columns 1 through 5 1.572816369474562 2.201942917264386 1.635800793960578 2.695107559788053 1.478413355546874 Columns 6 through 10 1.404831102709996 0.629126547789825 1.713111078598705 1.391260434780810 2.103238561272744 Columns 11 through 15 1.590313263839551 2.103238561272744 1.090736759616727 2.589223001191582 2.033867095735081 Columns 16 through 20 1.825496244926879 0.629126547789825 2.743712945526665 2.441925172889290 2.980237487501595 Column 21 2.793761753017197

其中,X每一行代表一个样例,X是个二维的。Y的第一个数表示x1与x2之间的马氏距离。

3.求x1与x2之间的马氏距离

>> x=[155 66;180 71;190 73;160 60;190 68;150 58;170 75]

x =

   155    66
180 71
190 73
160 60
190 68
150 58
170 75 >> cov=cov(x) cov = 1.0e+02 * 2.702380952380953 0.739285714285714
0.739285714285714 0.412380952380952 >> s=inv(cov) s = 0.007261927639280 -0.013018640484967
-0.013018640484967 0.047588267151168 >> a=[-25 -5]*s*[-25;-5] a = 2.473751332087140 >> sqrt(a) ans = 1.572816369474561

4.注意

计算两两马氏距离时,中间的协方差矩阵永远是总体的,而不是这两个的。所以,马氏距离很容易受总体的影响,总体一变化,两个样例之间的马氏距离就会变化。

以下叙述来自:欧氏距离 vs 马氏距离 - bluenight专栏 - CSDN博客 https://blog.csdn.net/chl033/article/details/5526337

1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;
    2)在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离来代替马氏距离,也可以理解为,如果样本数小于样本的维数,这种情况下求其中两个样本的距离,采用欧式距离计算即可。
    3)还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如A(3,4),B(5,6);C(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线(如果是大于二维的话,比较复杂???)。这种情况下,也采用欧式距离计算。
    4)在实际应用中“总体样本数大于样本的维数”这个条件是很容易满足的,而所有样本点出现3)中所描述的情况是很少出现的,所以在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。
我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。马氏距离有很多优点。它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。它的缺点是夸大了变化微小的变量的作用。

5. MATLAB求两个矩阵之间的马氏距离,使用pdist2()函数

>> x=rand(4,3)

x =

   0.792207329559554   0.849129305868777   0.743132468124916
0.959492426392903 0.933993247757551 0.392227019534168
0.655740699156587 0.678735154857773 0.655477890177557
0.035711678574190 0.757740130578333 0.171186687811562 >> y=rand(2,3) y = 0.706046088019609 0.276922984960890 0.097131781235848
0.031832846377421 0.046171390631154 0.823457828327293 >> z=pdist2(x, y, 'mahal') z = 11.881392154588022 8.912492295829436
10.377530870286948 8.703763775002274
9.513297701500704 6.612259802538707
10.858334218503852 8.268677052674791

其中,数据X是n*d的,数据Y是m*d的,则马氏距离是n*m的矩阵,代表数据X的第i个样例与数据Y的第j个样例之间的马氏距离。

MATLAB求马氏距离(Mahalanobis distance)的更多相关文章

  1. 马氏距离(Mahalanobis distance)

    马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧 ...

  2. paper 114:Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  3. Mahalanobis Distance(马氏距离)

    (from:http://en.wikipedia.org/wiki/Mahalanobis_distance) Mahalanobis distance In statistics, Mahalan ...

  4. Mahalanobia Distance(马氏距离)的解释

    马氏距离有多重定义: 1)可以表示 某一个样本与DataSet的距离. 2)可以表示两个DataSet之间的距离. 1) The Mahalanobis distance of an observat ...

  5. Mahalanobis距离(马氏距离)的“哲学”解释

    讲解教授:赵辉 (FROM : UESTC) 课程:<模式识别> 整理:PO主 基础知识: 假设空间中两点x,y,定义: 欧几里得距离, Mahalanobis距离, 不难发现,如果去掉马 ...

  6. 基于欧氏距离和马氏距离的异常点检测—matlab实现

    前几天接的一个小项目,基于欧氏距离和马氏距离的异常点检测,已经交接完毕,现在把代码公开. 基于欧式距离的: load data1.txt %导入数据,行为样本,列为特征 X=data1; %赋值给X ...

  7. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  8. Python实现的计算马氏距离算法示例

    Python实现的计算马氏距离算法示例 本文实例讲述了Python实现的计算马氏距离算法.分享给大家供大家参考,具体如下: 我给写成函数调用了 python实现马氏距离源代码:     # encod ...

  9. 相似系数_杰卡德距离(Jaccard Distance)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

随机推荐

  1. 使用LayoutInflater添加一个布局引用

    LayoutInflater 与 xml 的<include/>的区别,至今没搞清楚,下面记录一下LayoutInflater引用一个布局并立即显示呈现的方法: private void ...

  2. .NET CORE 设置cookie以及获取cookie

    使用我这个方式的前提是在mvc中,确认你安装了:Microsoft.AspNetCore.Mvc. 然后在继承了Controller的类型中使用我所说的方法. 直接使用即可,我是封装了方法供我自己使用 ...

  3. Oracle 数据库导出数据泵(EXPDP)文件存放的位置

    数据泵是服务器端工具,导出的文件是放在数据库所在的服务器上,当然我们知道可以通过directory目录对象来控制.目录对象默认有四个级别,当然是有优先级顺序的,优先级从上往下 1.每个文件单独的指定具 ...

  4. vs2010 编译平台 X86 X64 anycpu

    X86既32位程序,X64既64位程序,anycpu会根据当前的操作系统位数决定 但是如果应用程序编译成anycpu,会由操作系统位数决定,如果是dll之类的,会由调用dll的主程序位数决定 所以一般 ...

  5. 3. 原子变量-CAS算法

    1. 是什么 ? 2. CAS算法模拟 package com.gf.demo03; public class TestCompareAndSwap { public static void main ...

  6. JavaSE-基础语法(四)-javaSE进阶

    javaSE进阶 三.异常 四.多线程 五.Lambda表达式 六.IO流 七.网络编程 八.新特性 13.异常体系14.异常分类15.声明抛出捕获异常16.自定义异常17.线程概念18.线程同步19 ...

  7. Hibernate(十三)迫切内连接fetch

    迫切内连接fetch 内连接和迫切内连接的区别: 其主要区别就在于封装数据,因为他们查询的结果集都是一样的,生成底层的SQL语句也是一样的. 1.内连接:发送就是内连接的语句,封装的时候将属于各自对象 ...

  8. 腾讯云下的CentOS7 配置 Apache服务器

    第一步 :安装Apache服务程序(软件包名为httpd) * yum install httpd 第二步:配置httpd.conf文件 * vi /etc/httpd/conf/httpd.conf ...

  9. Docker多步构建更小的Java镜像

    译者按: 最新版Docker将支持多步构建(Multi-stage build),这样使用单个Dockerfile就可以定义多个中间镜像用于构建,测试以及发布等多个步骤,并且有效减小最终镜像的大小. ...

  10. 前端学习 之 Bootstrap(二)

    一.代码 内联代码:用<code>包裹,但是需要用<和>表示尖括号. 键盘输入:用<kbd>包裹表示键盘输入的内容. 多行代码:用<pre>包裹多行代码 ...