Update

  • \(\texttt{2021.3.9}\) 修改了题解中的错别字。
  • \(\texttt{2021.12.16}\) 修改了一个没括回的区间。

Content

有 \(3\) 个游泳者,同时在 \(0\) 秒从起点出发,第一个游泳者每 \(a\) 秒游一个来回,第二个游泳者每 \(b\) 秒游一个来回,第三个游泳者每 \(c\) 秒游一个来回。

你在第 \(p\) 秒开始来到起点观看他们的游泳比赛,你想知道从第 \(p\) 秒开始到你看到的第一个人重新游回起点时经过的时间。

数据范围:\(t\) 组数据,\(t\in[1,10^3]\),\(p,a,b,c\in[1,10^{18}]\)。

Solution

一看到 \(p,a,b,c\) 的数据范围这么大,我们就考虑是否有 \(\mathcal{O}(1)\) 的做法。而想法也很简单:

  • 如果 \(p\) 能够被 \(a,b,c\) 三个数当中的任意一个整除,那么答案是 \(0\),因为你一到起点就会看到有人游到终点。
  • 否则:第一个游泳者还需要 \(a-p\bmod a\) 秒到达起点,第二个游泳者还需要 \(b-p\bmod b\) 秒到达起点,第三个游泳者还需要 \(c-p\bmod c\) 秒到达起点。故答案为 \(\min(a-p\bmod a,b-p\bmod b,c-p\bmod c)\)。

Code

ll p, a, b, c;

int main() {
MT {
p = Rll, a = Rll, b = Rll, c = Rll;
if(!(p % a) || !(p % b) || !(p % c)) puts("0");
else printf("%lld\n", min(a - p % a, min(b - p % b, c - p % c)));
}
return 0;
}

CF1492A Three swimmers 题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 面向对象中static的理解(2) (单例模式)

    作用:只产生一个对象 1 class Yoshi { 2 public: 3 //外界只能通过这种方式调用这一个对象,返回必须是引用 4 static Yoshi& getInstance() ...

  2. selenium定位元素方法汇总

    #打开网页前三步 from selenium import webdriver driver=webidriver.Chrome() driver.get("https://www.baid ...

  3. Jenkins系列-权限管理

    在实际工作中,存在多个团队都需要Jenkins来实现持续交付,但是又希望不同团队之间进行隔离,每个项目有自己的view, 只能看到自己项目的jenkins job. 但是,jenkins默认的权限管理 ...

  4. 【CSP2019 D1T2】【括号树】

    题面 不再多说,想必大家都看过这个题 思路 我们可以手推几个满足条件的字符串 我们发现在这些字符串里 每个)都与离它最近的(的匹配 所以我们维护树上每个节点到根节点中没用使用过的(的位置(nl[n]) ...

  5. 洛谷 P6788 - 「EZEC-3」四月樱花(整除分块)

    题面传送门 题意: 求 \[\prod\limits_{x=1}^n\prod\limits_{y|x}\frac{y^{d(y)}}{\prod\limits_{z|y}z+1} \pmod{p} ...

  6. 使用bioawk对基因组fasta序列ID(染色体/scaffold名称)排序?

    目录 需求 实现 需求 已知某基因组序列,染色体或scaffold ID顺序不定,想要对其按数字排序. 原顺序: 想要的排序结果: 实现 使用bioawk,没有的话conda直接安装. bioawk ...

  7. [R] 保存pheatmap图片对象到文件

    一般我们使用pheatmap通过Rstudio交互得到的图片在plots的Export导出即可,如何保存对象到文件呢?这个需求在自动化流程中很常见,作者似乎也没说明. 生成示例数据: test = m ...

  8. BSA分析

    目录 两种算法 1. 欧氏距离(ED)算法 2. SNP-index算法 实操 1. 上游分析 2. 下游分析 两种算法 1. 欧氏距离(ED)算法 mut与wt分别代表突变型混池.野生型混池,A.C ...

  9. 30-Container With Most Water-Leetcode

    Given n non-negative integers a1, a2, -, an, where each represents a point at coordinate (i, ai). n ...

  10. Selenium的安装和使用

    一.Selenium的安装,Selenium是一个自动化测试工具,利用它我们可以驱动浏览器执行特定的动作,如点击.下拉等操作.对于一些JavaScript渲染的页面来说,这种抓取方式非常有效.1.pi ...