Codeforces 891E - Lust(生成函数)
NaCly_Fish:《简单》的生成函数题
然鹅我连第一步都没 observe 出来
首先注意到如果我们按题意模拟那肯定是不方便计算贡献的,因此考虑对题目的问法进行一些转化。《显然》,对于一种操作序列而言,其操作完之后答案的值,就是原来 \(a_i\) 的乘积减去操作后所有 \(a_i\) 的乘积,因为每次操作前后答案与所有 \(a_i\) 的乘积之和是个定值。因此问题可以转化为,求操作之后所有 \(a_i\) 的乘积的期望值。如果我们设 \(c_i\) 表示第 \(i\) 个数被操作的次数,那么操作之后 \(a_i\) 的乘积的期望值可以表示为
\]
那么答案即为 \(\prod\limits_{i=1}^na_i-E(P)\)
考虑怎样求这个东西,注意到这里出现了 \(\sum c_i=k\),因此我们可以很自然地想到生成函数,又因为每次选择的位置是有顺序的,故此题涉及的是排列而不是组合问题,因此本题应采用 EGF,具体来说我们构造指数型生成函数 \(F_i(x)=\sum\limits_{v\ge 0}\dfrac{a_i-v}{v!}x^v\),那么重新审视一下上面的式子就可以得到
\]
直接把 \(F_i(x)\) 卷起来显然不合适,不过注意到这东西好像能跟 \(e^x\) 扯上关系,因此考虑化简:
F_i(x)&=\sum\limits_{v\ge 0}\dfrac{a_i-v}{v!}x^v\\
&=\sum\limits_{v\ge 0}\dfrac{a_ix^v}{v!}-\sum\limits_{v\ge 1}\dfrac{x^v}{(v-1)!}\\
&=a_i\sum\limits_{v\ge 0}\dfrac{x^v}{v!}-x\sum\limits_{v\ge 0}\dfrac{x^v}{v!}\\
&=(a_i-x)e^x
\end{aligned}
\]
带回去
\]
考虑后面那个多项式
\]
我们考虑枚举其贡献给 \([x^k]\) 的系数,即
\]
即
\]
带回去
\]
即
\]
\(G(x)\) 的系数可以分治 NTT 做到 \(\mathcal O(n\log^2n)\),不过对于此题而言没有必要,\(n^2\) 递推即可。
const int MAXN=5000;
const int MOD=1e9+7;
int n,k,dp[MAXN+5];
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int main(){
scanf("%d%d",&n,&k);dp[0]=1;
for(int i=1,x;i<=n;i++){
scanf("%d",&x);
for(int j=i;~j;j--) dp[j]=(1ll*x*dp[j]-((!j)?0:dp[j-1])+MOD)%MOD;
} int ivn=qpow(n,MOD-2),res=dp[0];
for(int i=0,mul=1,pw=1;i<=n;i++){
res=(res-1ll*mul*dp[i]%MOD*pw%MOD+MOD)%MOD;
mul=1ll*mul*(k-i)%MOD;pw=1ll*pw*ivn%MOD;
}
printf("%d\n",res);
return 0;
}
Codeforces 891E - Lust(生成函数)的更多相关文章
- 【CF891E】Lust 生成函数
[CF891E]Lust 题意:给你一个长度为n的序列$a_i$,对这个序列进行k次操作,每次随机选择一个1到n的数x,令$res+=\prod\limits_{i!=x}a_i$(一开始res=0) ...
- CF891E Lust 生成函数
传送门 设在某一次操作之后的\(a\)数组变为了\(a'\)数组,那么\(\prod\limits_{i \neq x} a_i = \prod a_i - \prod a_i'\).那么就不难发现我 ...
- Codeforces 438E The Child and Binary Tree [DP,生成函数,NTT]
洛谷 Codeforces 思路 看到计数和\(998244353\),可以感觉到这是一个DP+生成函数+NTT的题. 设\(s_i\)表示\(i\)是否在集合中,\(A\)为\(s\)的生成函数,即 ...
- Codeforces 438E The Child and Binary Tree - 生成函数 - 多项式
题目传送门 传送点I 传送点II 传送点III 题目大意 每个点的权值$c\in {c_{1}, c_{2}, \cdots, c_{n}}$,问对于每个$1\leqslant s\leqslant ...
- [bzoj3625][Codeforces 250 E]The Child and Binary Tree(生成函数+多项式运算+FFT)
3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 650 Solved: 28 ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
- Codeforces 1411G - No Game No Life(博弈论+生成函数+FWTxor)
Codeforces 题面传送门 & 洛谷题面传送门 一道肥肠套路的题目. 首先这题涉及博弈论.注意到这里每一个棋子的移动方式都是独立的,因此可以考虑 SG 定理.具体来说,我们先求出每个棋子 ...
- [CodeForces - 712D]Memory and Scores (DP 或者 生成函数)
题目大意: 两个人玩取数游戏,第一个人分数一开始是a,第二个分数一开始是b,接下来t轮,每轮两人都选择一个[-k,k]范围内的整数,加到自己的分数里,求有多少种情况使得t轮结束后a的分数比b高. ( ...
- Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]
CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 ...
随机推荐
- 【Spring】IoC容器 - 依赖来源
前言 上一篇文章已经学习了[依赖注入]相关的知识,这里详细的介绍一下[依赖来源]. 依赖来源 我们把依赖来源分为依赖查找的来源和依赖注入的来源分别讨论. 依赖查找的来源 1. Spring BeanD ...
- 【Spring】重新认识 IoC
前言 IoC (Inversion of control) 并不是Spring特有的概念. IoC 维基百科的解释: In software engineering, inversion of con ...
- 注解,@Qualifier+@Autowired 和 @Resource
摘要: 项目中,对于AOP的使用,就是通过用注解来注入的. 更改之前的注解,是使用:@Qualifier+@Autowired 但是,通过这样注解,在项目启动阶段,需要自动扫描的过程是非常缓慢的, ...
- Spring Cloud Alibaba 介绍及工程准备
简介 SpringCloud Alibaba是阿里巴巴集团开源的一套微服务架构解决方案. 微服务架构是为了更好的分布式系统开发,将一个应用拆分成多个子应用,每一个服务都是可以独立运行的子工程.其中涵盖 ...
- [NOIP模拟46]鼠树
神仙题. 首先不考虑把黑点变白,发现每个白点的信息与它的归属点是相同的.可以在线段树中只维护黑点的信息,再记录$DFS$序上每个点之前黑点个数的前缀和,每次操作可以二分出该点的归属点进行操作. 具体维 ...
- 高频面试题:一张图彻底搞懂Spring循环依赖
1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...
- Python报错ModuleNotFoundError: No module named 'numpy'
转载:https://blog.csdn.net/qq_39779233/article/details/103224712 Python报错ModuleNotFoundError: No modul ...
- CF398A Cards | 贪心
题目链接 我怎么连这种题都做得那么艰难-- 可以发现一些结论,然后枚举'x'被分成几段就好了. 我真的越来越菜 #include<iostream> #include<cstdio& ...
- 策略路由——使用Router-Policy策略路由进行路由协议的引入
1.实验目的:实现R3-R2-R1为访问主线路,R3-R4-R1为访问备份线路 2.实验拓扑及IP,如图; 3.基本配置(端口IP) R1: <Huawei>sys[Huawei]sys ...
- oracle 数据库修改端口号1521
1.关闭监听 2.修改配置文件,port=1933 #vi $ORACLE_HOME/network/admin/listener.ora 3.登录并查看local_listener参数,因为使用的是 ...