1.简介

官网:http://comet-ms.sourceforge.net/

  • 1993年开发,持续更新,免费开源
  • 适用Windows/Linux
  • 多线程,支持多种输入输出格式:输入谱图文件(mzXML, mzML, mgf, or ms2/cms2),输出.pep.xml/.pin.xml/.sqt/.out等文件

运行:

comet.exe input.mzXML
comet.exe input.mzML
comet.exe input.mgf
comet.exe input.ms2
comet.exe *.ms2 #支持多文件输入

其他整合了Comet的工具:

2.下载安装

下载UI界面版本:setup.exe.,用户指南:http://comet-ms.sourceforge.net/CometUI/CometUI-User-Guide.pdf

下载Linux版本:https://sourceforge.net/projects/comet-ms/files/

依然只试用Linux版本。

unzip  comet_2019015.zip

3.软件使用

运行非常简单,软件后调用参数配置文件和谱图原始文件即可。

参数配置文件在官网解释得非常详细:Search parameters。同时针对不同质谱仪的一级和二级质量误差,官方提供了3个示例参数文件:

●  comet.params.low-low 用于低一级和二级误差,如 ion trap

●  comet.params.high-low 用于高一级误差和低二级误差,如Velos-Orbitrap

●  comet.params.high-high 用于高一级和二级误差,如 Q Exactive 或 Q-Tof

以高分辨质谱仪为例,以下参数除了数据库设置,大部分参数默认即可:

# comet_version 2019.01 rev. 0
# Comet MS/MS search engine parameters file.
# Everything following the '#' symbol is treated as a comment. database_name = /some/path/db.fasta
decoy_search = 0 # 0=no (default), 1=concatenated search, 2=separate search
peff_format = 0 # 0=no (normal fasta, default), 1=PEFF PSI-MOD, 2=PEFF Unimod
peff_obo = # path to PSI Mod or Unimod OBO file num_threads = 0 # 0=poll CPU to set num threads; else specify num threads directly (max 128) #
# masses
#
peptide_mass_tolerance = 20.00
peptide_mass_units = 2 # 0=amu, 1=mmu, 2=ppm
mass_type_parent = 1 # 0=average masses, 1=monoisotopic masses
mass_type_fragment = 1 # 0=average masses, 1=monoisotopic masses
precursor_tolerance_type = 1 # 0=MH+ (default), 1=precursor m/z; only valid for amu/mmu tolerances
isotope_error = 3 # 0=off, 1=0/1 (C13 error), 2=0/1/2, 3=0/1/2/3, 4=-8/-4/0/4/8 (for +4/+8 labeling) #
# search enzyme
#
search_enzyme_number = 1 # choose from list at end of this params file
search_enzyme2_number = 0 # second enzyme; set to 0 if no second enzyme
num_enzyme_termini = 2 # 1 (semi-digested), 2 (fully digested, default), 8 C-term unspecific , 9 N-term unspecific
allowed_missed_cleavage = 2 # maximum value is 5; for enzyme search #
# Up to 9 variable modifications are supported
# format: <mass> <residues> <0=variable/else binary> <max_mods_per_peptide> <term_distance> <n/c-term> <required> <neutral_loss>
# e.g. 79.966331 STY 0 3 -1 0 0 97.976896
#
variable_mod01 = 15.9949 M 0 3 -1 0 0 0.0
variable_mod02 = 0.0 X 0 3 -1 0 0 0.0
variable_mod03 = 0.0 X 0 3 -1 0 0 0.0
variable_mod04 = 0.0 X 0 3 -1 0 0 0.0
variable_mod05 = 0.0 X 0 3 -1 0 0 0.0
variable_mod06 = 0.0 X 0 3 -1 0 0 0.0
variable_mod07 = 0.0 X 0 3 -1 0 0 0.0
variable_mod08 = 0.0 X 0 3 -1 0 0 0.0
variable_mod09 = 0.0 X 0 3 -1 0 0 0.0
max_variable_mods_in_peptide = 5
require_variable_mod = 0 #
# fragment ions
#
# ion trap ms/ms: 1.0005 tolerance, 0.4 offset (mono masses), theoretical_fragment_ions = 1
# high res ms/ms: 0.02 tolerance, 0.0 offset (mono masses), theoretical_fragment_ions = 0, spectrum_batch_size = 10000
#
fragment_bin_tol = 0.02 # binning to use on fragment ions
fragment_bin_offset = 0.0 # offset position to start the binning (0.0 to 1.0)
theoretical_fragment_ions = 0 # 0=use flanking peaks, 1=M peak only
use_A_ions = 0
use_B_ions = 1
use_C_ions = 0
use_X_ions = 0
use_Y_ions = 1
use_Z_ions = 0
use_NL_ions = 0 # 0=no, 1=yes to consider NH3/H2O neutral loss peaks #
# output
#
output_sqtstream = 0 # 0=no, 1=yes write sqt to standard output
output_sqtfile = 0 # 0=no, 1=yes write sqt file
output_txtfile = 0 # 0=no, 1=yes write tab-delimited txt file
output_pepxmlfile = 1 # 0=no, 1=yes write pep.xml file
output_percolatorfile = 0 # 0=no, 1=yes write Percolator tab-delimited input file
print_expect_score = 1 # 0=no, 1=yes to replace Sp with expect in out & sqt
num_output_lines = 5 # num peptide results to show
show_fragment_ions = 0 # 0=no, 1=yes for out files only sample_enzyme_number = 1 # Sample enzyme which is possibly different than the one applied to the search.
# Used to calculate NTT & NMC in pepXML output (default=1 for trypsin). #
# mzXML parameters
#
scan_range = 0 0 # start and end scan range to search; either entry can be set independently
precursor_charge = 0 0 # precursor charge range to analyze; does not override any existing charge; 0 as 1st entry ignores parameter
override_charge = 0 # 0=no, 1=override precursor charge states, 2=ignore precursor charges outside precursor_charge range, 3=see online
ms_level = 2 # MS level to analyze, valid are levels 2 (default) or 3
activation_method = ALL # activation method; used if activation method set; allowed ALL, CID, ECD, ETD, ETD+SA, PQD, HCD, IRMPD #
# misc parameters
#
digest_mass_range = 600.0 5000.0 # MH+ peptide mass range to analyze
peptide_length_range = 5 63 # minimum and maximum peptide length to analyze (default 1 63; max length 63)
num_results = 100 # number of search hits to store internally
max_duplicate_proteins = 20 # maximum number of protein names to report for each peptide identification; -1 reports all duplicates
skip_researching = 1 # for '.out' file output only, 0=search everything again (default), 1=don't search if .out exists
max_fragment_charge = 3 # set maximum fragment charge state to analyze (allowed max 5)
max_precursor_charge = 6 # set maximum precursor charge state to analyze (allowed max 9)
nucleotide_reading_frame = 0 # 0=proteinDB, 1-6, 7=forward three, 8=reverse three, 9=all six
clip_nterm_methionine = 0 # 0=leave sequences as-is; 1=also consider sequence w/o N-term methionine
spectrum_batch_size = 15000 # max. # of spectra to search at a time; 0 to search the entire scan range in one loop
decoy_prefix = DECOY_ # decoy entries are denoted by this string which is pre-pended to each protein accession
equal_I_and_L = 1 # 0=treat I and L as different; 1=treat I and L as same
output_suffix = # add a suffix to output base names i.e. suffix "-C" generates base-C.pep.xml from base.mzXML input
mass_offsets = # one or more mass offsets to search (values substracted from deconvoluted precursor mass)
precursor_NL_ions = # one or more precursor neutral loss masses, will be added to xcorr analysis #
# spectral processing
#
minimum_peaks = 10 # required minimum number of peaks in spectrum to search (default 10)
minimum_intensity = 0 # minimum intensity value to read in
remove_precursor_peak = 0 # 0=no, 1=yes, 2=all charge reduced precursor peaks (for ETD), 3=phosphate neutral loss peaks
remove_precursor_tolerance = 1.5 # +- Da tolerance for precursor removal
clear_mz_range = 0.0 0.0 # for iTRAQ/TMT type data; will clear out all peaks in the specified m/z range #
# additional modifications
# add_Cterm_peptide = 0.0
add_Nterm_peptide = 0.0
add_Cterm_protein = 0.0
add_Nterm_protein = 0.0 add_G_glycine = 0.0000 # added to G - avg. 57.0513, mono. 57.02146
add_A_alanine = 0.0000 # added to A - avg. 71.0779, mono. 71.03711
add_S_serine = 0.0000 # added to S - avg. 87.0773, mono. 87.03203
add_P_proline = 0.0000 # added to P - avg. 97.1152, mono. 97.05276
add_V_valine = 0.0000 # added to V - avg. 99.1311, mono. 99.06841
add_T_threonine = 0.0000 # added to T - avg. 101.1038, mono. 101.04768
add_C_cysteine = 57.021464 # added to C - avg. 103.1429, mono. 103.00918
add_L_leucine = 0.0000 # added to L - avg. 113.1576, mono. 113.08406
add_I_isoleucine = 0.0000 # added to I - avg. 113.1576, mono. 113.08406
add_N_asparagine = 0.0000 # added to N - avg. 114.1026, mono. 114.04293
add_D_aspartic_acid = 0.0000 # added to D - avg. 115.0874, mono. 115.02694
add_Q_glutamine = 0.0000 # added to Q - avg. 128.1292, mono. 128.05858
add_K_lysine = 0.0000 # added to K - avg. 128.1723, mono. 128.09496
add_E_glutamic_acid = 0.0000 # added to E - avg. 129.1140, mono. 129.04259
add_M_methionine = 0.0000 # added to M - avg. 131.1961, mono. 131.04048
add_O_ornithine = 0.0000 # added to O - avg. 132.1610, mono 132.08988
add_H_histidine = 0.0000 # added to H - avg. 137.1393, mono. 137.05891
add_F_phenylalanine = 0.0000 # added to F - avg. 147.1739, mono. 147.06841
add_U_selenocysteine = 0.0000 # added to U - avg. 150.0379, mono. 150.95363
add_R_arginine = 0.0000 # added to R - avg. 156.1857, mono. 156.10111
add_Y_tyrosine = 0.0000 # added to Y - avg. 163.0633, mono. 163.06333
add_W_tryptophan = 0.0000 # added to W - avg. 186.0793, mono. 186.07931
add_B_user_amino_acid = 0.0000 # added to B - avg. 0.0000, mono. 0.00000
add_J_user_amino_acid = 0.0000 # added to J - avg. 0.0000, mono. 0.00000
add_X_user_amino_acid = 0.0000 # added to X - avg. 0.0000, mono. 0.00000
add_Z_user_amino_acid = 0.0000 # added to Z - avg. 0.0000, mono. 0.00000 #
# COMET_ENZYME_INFO _must_ be at the end of this parameters file
#
[COMET_ENZYME_INFO]
0. No_enzyme 0 - -
1. Trypsin 1 KR P
2. Trypsin/P 1 KR -
3. Lys_C 1 K P
4. Lys_N 0 K -
5. Arg_C 1 R P
6. Asp_N 0 D -
7. CNBr 1 M -
8. Glu_C 1 DE P
9. PepsinA 1 FL P
10. Chymotrypsin 1 FWYL P

一般设置数据库database_name,线程数num_threads,特异性酶search_enzyme_number = 1。(如果是多肽组学,设置为非特异性酶search_enzyme_number = 0

运行命令

comet.2019015.linux.exe -P./comet.params.high-high test_1.mzML

谱图文件支持mzXML, mzML, mgf, or ms2/cms2等多种格式,obitrap的高分辨质谱仪(.raw)需要转化。关于Linux上质谱原始数据的格式转化,可参考博文:【ThermoRawFileParser】质谱raw格式转换mgf(-f参数设为1即可得到mzML格式)。

4.结果

运行结果会出现`test_1.pep.xml,test_1.pin,test_1.txt等文件。主要看txt文件,即为鉴定结果:

第一行:

CometVersion 2019.01 rev. 5     test_1       07/28/2020, 02:12:23 PM  /path/to/database/test.fasta

结果表头:

      1 scan
2 num
3 charge
4 exp_neutral_mass
5 calc_neutral_mass
6 e-value
7 xcorr
8 delta_cn
9 sp_score
10 ions_matched
11 ions_total
12 plain_peptide
13 modified_peptide
14 prev_aa
15 next_aa
16 protein
17 protein_count
18 modifications

一般也要根据需要,进行后处理。


蛋白质组学鉴定定量系列软件总结:

【1】蛋白鉴定软件之X!Tandem

【2】蛋白鉴定软件之Comet

【3】蛋白鉴定软件之Mascot

【4】蛋白质组学鉴定软件之MSGFPlus

【5】蛋白质组学鉴定定量软件之PD

【6】蛋白质组学鉴定定量软件之MaxQuant

【2】蛋白鉴定软件之Comet的更多相关文章

  1. 【3】蛋白鉴定软件之Mascot

    目录 1.简介 2.配置 2.1在线版本 2.2 服务器版本 3.运行 3.1 在线版本 3.2 服务器版本 4.结果 1.简介 Mascot是非常经典的蛋白鉴定软件,被Frost & Sul ...

  2. 【1】蛋白鉴定软件之X!Tandem

    目录 1. 简介 2.下载安装 3. 软件试用 4. 结果 5. FAQ 1. 简介 X!Tandem是GPM:The Global Proteome Machine(主要基于Web的开源用户界面,用 ...

  3. 【4】蛋白质组学鉴定软件之MSGFPlus

    目录 1.简介 2.安装运行 3.结果 1.简介 MSGF+也是近年来应用得比较多的蛋白鉴定软件.java写的,2008年初次发表JPR,2014年升级发表NC,免费开源,持续更新维护,良心软件.而且 ...

  4. 【6】蛋白质组学鉴定定量软件之MaxQuant

    目录 1.简介 2.下载安装 3.配置与运行 4.结果 5.Perseus后处理 6.小结 1.简介 2016年,德国马普所的Cox和蛋白质组学领域巨擘Matthias Mann合作开发了MaxQua ...

  5. 【5】蛋白质组学鉴定定量软件之PD

    目录 1.简介 2.安装与配置 3.分析流程 4.结果 1.简介 PD全称Proteome Discoverer,是ThermoFisher在2008年推出的商业Windows软件,没错,收费,还不菲 ...

  6. MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性

    一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...

  7. 【宏蛋白组】iMetaLab平台分析肠道宏蛋白质组数据

    目录 一.iMetaLab简介 二.内置工具与模块 1. Data Processing module 2. Functional Analysis 3. R Developing environme ...

  8. Journal of Proteomics Research | 自动的、可重复的免疫多肽数据分析流程MHCquant

    题目:MHCquant: Automated and reproducible data analysis for immunopeptidomics 期刊:Journal of Proteome R ...

  9. 解读人:李思奇,Development of a sensitive, scalable method for spatial, cell-type-resolved proteomics of the human brain. (一种用于研究人类大脑基于空间或细胞类型的蛋白质组学的灵敏方法)

    发表时间:(2019年4月) 一. 概述: 本文报道了一种可研究人类大脑组织中特定神经细胞的蛋白质组学的方法.作者通过激光捕获显微切割技术(LCM)从逝者大脑中分离出目的神经元细胞,接着尝试了一系列不 ...

随机推荐

  1. Linux中检查字符串是否为合法IP地址的shell脚本

    #!/bin/bash #判断IP地址是否为有效IP CHKECK_IP () { CHECK_STEP1=`echo $1 | awk -F"." '{print NF}'` i ...

  2. 按照工业标准1英寸=25.4mm,而在电子元件成像领域Sensor尺寸1英寸=16mm。

    按照工业标准1英寸=25.4mm,而在电子元件成像领域Sensor尺寸1英寸=16mm. 我们平常所说的CCD/CMOS的尺寸,实际上是指Sensor对角线的长度,这一点跟我们平常所说的屏幕尺寸是一样 ...

  3. 【Azure 应用服务】App Service For Linux 部署Java Spring Boot应用后,查看日志文件时的疑惑

    编写Java Spring Boot应用,通过配置logging.path路径把日志输出在指定的文件夹中. 第一步:通过VS Code创建一个空的Spring Boot项目 第二步:在applicat ...

  4. 【JavaScript基础】Js的定时器(你想看的原理也在哟)

    [JavaScript基础]Js的定时器(你想看的原理也在哟) 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 说明 本章是经历 ...

  5. java中Map及Map.Entry详解

    Map是java中的接口,Map.Entry是Map的一个内部接口. Map提供了一些常用方法,如keySet().entrySet()等方法. keySet()方法返回值是Map中key值的集合:e ...

  6. Laravel 中输出 SQL 语句的到 log 日志

    在 AppServiceProvider.php 中的 boot 方法中添加如下代码 即可 public function boot() { //数据库监听 DB::listen(function ( ...

  7. Win10-更改c盘下的用户文件夹名

    如果你是win10家庭版,请先升级成专业版 win10家庭版升级到win10专业版 修改用户名称

  8. OpenHarmony LiteOS C-SKY指令集移植指北

    摘要:本文介绍在OpenHarmony社区LiteOS-M项目中新增C-SKY指令集的开发流程,以及适配相应qemu工程的方法和步骤,供LiteOS内核相关开发者学习交流. 本文分享自华为云社区< ...

  9. css 跑马灯加载特效

    css 跑马灯加载特效 <!DOCTYPE html> <html lang="en"> <head> <meta charset=

  10. PTA 7-7 六度空间 (30分)

    PTA 7-7 六度空间 (30分) "六度空间"理论又称作"六度分隔(Six Degrees of Separation)"理论.这个理论可以通俗地阐述为:& ...