【R】如何去掉数据框中包含非数值的行?
这个需求还是很常见的,因为我们在处理数据的时候无法全面考虑到数据框中含有哪些类型的数据,比如含有NA、NaN或Inf,甚至是一些乱七八糟的字符串。这时不论做统计分析还是作图,都会带来意想不到的错误。为防止这种现象发生,有必要在分析数据前将这些含有特殊字符的行去掉。
1. 去掉指定列中包含NA/Inf/NaN的行
#如果只是包含NA/Inf/NaN,读入都是视为数值
d <- data.frame(x=c(NA,2,3,Inf,-Inf,NaN),y=c(1,Inf,6,NA,4,NaN))
d
str(d)
> d
x y
1 NA 1
2 2 Inf
3 3 6
4 Inf NA
5 -Inf 4
6 NaN NaN
'data.frame': 6 obs. of 2 variables:
$ x: num NA 2 3 Inf -Inf ...
$ y: num 1 Inf 6 NA 4 ...
单独去掉:
> d[!is.na(d$x),] #去掉NA和NaN
x y
2 2 Inf
3 3 6
4 Inf NA
5 -Inf 4
> d[!is.nan(d$x),] #去掉NaN
x y
1 NA 1
2 2 Inf
3 3 6
4 Inf NA
5 -Inf 4
> d[!is.infinite(d$x),] #去掉Inf
x y
1 NA 1
2 2 Inf
3 3 6
6 NaN NaN
一次去掉:
> d[is.finite(d$x),] #去掉Inf、NA和NaN,推荐
x y
2 2 Inf
3 3 6
> d[!is.na(d$x)&!is.nan(d$x)&!is.infinite(d$x),]
x y
2 2 Inf
3 3 6
2. 去掉指定列中包含其他乱七八糟字符串的行
如果除了以上三种,还包含其他乱七八糟的字符(一般读入时默认这一列就是因子类型),比如:
d <- data.frame(x=c(NA,2.0,3.3,0.2,4,Inf,NaN,"*","$","#"),y=c(1,NA,4,"*",'&',2,3,4,2,1))
> d
x y
1 <NA> 1
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
7 NaN 3
8 * 4
9 $ 2
10 # 1
> str(d)
'data.frame': 10 obs. of 2 variables:
$ x: Factor w/ 9 levels "#","$","*","0.2",..: NA 5 6 4 7 8 9 3 2 1
$ y: Factor w/ 6 levels "&","*","1","2",..: 3 NA 6 2 1 4 5 6 4 3
去掉NA还是可以同上:
> d[!is.na(d$x),]
x y
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
7 NaN 3
8 * 4
9 $ 2
10 # 1
但NaN和Inf就不行了,因为is.nan和is.infinite函数只识别数值型。
> d[!is.nan(d$x),]
x y
1 <NA> 1
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
7 NaN 3
8 * 4
9 $ 2
10 # 1
> d[!is.infinite(d$x),]
x y
1 <NA> 1
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
7 NaN 3
8 * 4
9 $ 2
10 # 1
> d[is.finite(d$x),]
x y
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
7 NaN 3
8 * 4
9 $ 2
10 # 1
如果硬要这么干,就要进行类型转换,注意因子转数值需要字符做桥梁哦~
> d[!is.nan(as.numeric(as.character(d$x))),]
x y
1 <NA> 1
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
8 * 4
9 $ 2
10 # 1
Warning message:
In `[.data.frame`(d, !is.nan(as.numeric(as.character(d$x))), ) :
NAs introduced by coercion
> d[!is.infinite(as.numeric(as.character(d$x))),]
x y
1 <NA> 1
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
7 NaN 3
8 * 4
9 $ 2
10 # 1
Warning message:
In `[.data.frame`(d, !is.infinite(as.numeric(as.character(d$x))), :
NAs introduced by coercion
> d[is.finite(as.numeric(as.character(d$x))),]
x y
2 2 <NA>
3 3.3 4
4 0.2 *
5 4 &
Warning message:
In `[.data.frame`(d, is.finite(as.numeric(as.character(d$x))), ) :
NAs introduced by coercion
警告信息可以看到,乱七八糟字符强制转换数值视为NA了。因为数据量足够大的时候,我们无法知道数据里还含有什么妖魔鬼怪,这时可以只识别数字来提取(不包含NA、Inf和NaN):
t <- grep("^\\d+$",as.character(d$x))
#as.numeric(as.character(d$x[t]))
d[t,] #这里还是因子型,根据需要再转换为数值
> t
[1] 2 5
> d[t,]
x y
2 2 <NA>
5 4 &
3. 去掉整个数据框中包含非数值的行
如果我们是针对整个数据框去除包含非数值的行?
只包含NA、NaN和Inf的情况
d <- data.frame(x=c(NA,2,3,Inf,-Inf,NaN),y=c(1,Inf,6,NA,4,NaN))
> na.omit(d)
x y
3 3.3 4
4 0.2 *
5 4 &
6 Inf 2
7 NaN 3
8 * 4
9 $ 2
10 # 1
> d[!is.nan(rowSums(d)),]
x y
1 NA 1
2 2 Inf
3 3 6
4 Inf NA
5 -Inf 4
> d[!is.infinite(rowSums(d)),] #为啥还有一个Inf的行?
x y
1 NA 1
3 3 6
4 Inf NA
6 NaN NaN
> d[is.finite(rowSums(d)),] #去掉Inf、NA和NaN,推荐
x y
3 3 6
或者使用R包IDPmisc::NaRv
来处理:
> require(IDPmisc)
> NaRV.omit(d)
x y
3 3 6
针对其他字符情况
我自己随便写的:
> index <- apply(d,1,function(x){grepl("^\\d+$",as.character(x))})
> index
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] FALSE TRUE TRUE FALSE FALSE FALSE
[2,] TRUE FALSE TRUE FALSE TRUE FALSE
> d[apply(index,2,function(x)all(x)),]
x y
3 3 6
4. 总结下推荐用法
- 指定列,且只含有NA/Inf/NaN:
d[is.finite(d$x),]
- 指定列,含有其他字符:
d[is.finite(as.numeric(as.character(d$x))),]
- 不指定列,且只含有NA/Inf/NaN:
d[is.finite(rowSums(d)),]
IDPmisc::NaRV.omit(d)
- 不指定列,含有其他字符:
index <- apply(d,1,function(x){grepl("^\\d+$",as.character(x))})
d[apply(index,2,function(x)all(x)),]
Ref:https://stackoverflow.com/questions/15773189/remove-na-nan-inf-in-a-matrix
https://www.thinbug.com/q/25276155
【R】如何去掉数据框中包含非数值的行?的更多相关文章
- 用R语言提取数据框中日期对应年份(列表转矩阵)
用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用 ...
- R语言数据框中,用0替代NA缺失值
1.用0替代数据框中的缺失值NA 生成数据框: > m <- matrix(sample(c(NA, :), , replace = TRUE), ) > d <- as.da ...
- R语言学习——数据框
> #数据框可以包含不同模式(数值型.字符型.逻辑型等)的数据,是R中最常处理的数据结构.数据框可以通过函数data.frame()创建:mydata<-data.frame(coll,c ...
- MFC 编辑框中字体大小改变,行高不能改变,只能显示一半的问题,已解决。
CKagulaCEdit是CEdit的一个继承类,m_edit的CKagulaCEdit类型的一个变量 调用的时候,是这样的: 编辑框中字体大小改变,行高不能改变,只能显示一半的问题,问题如下: 这时 ...
- Python中dataframe数据框中选择某一列非空的行
利用pandas自带的函数notnull可以很容易判断某一列是否为null类型,但是如果这一列中某一格为空字符串"",此时notnull函数会返回True,而一般我们选择非空行并不 ...
- 在javaScript中把非数值类型的数据自动转换为数值类型的两种方式
一.使用Number()函数. 二.使用parseInt()/parseFloat()函数. 详情: 一.使用Number()函数将非数值类型的数据自动的转化为数组类型 Number()函数可以将任何 ...
- R: data.frame 数据框的:查询位置、排序(sort、order)、筛选满足条件的子集。。
################################################### 问题:数据框 data.frame 查.排序等, 18.4.27 怎么对数据框 data.f ...
- 2-7 R语言基础 数据框
#数据框 > df <- data.frame(id=c(1,2,3,4),name=c("a","b","c","d ...
- R语言中将数据框(data.frame)中字符型数据转化为数值型
as.data.frame(lapply(data,as.numeric))
随机推荐
- Scrum Meeting 0609
零.说明 日期:2021-6-9 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 困难 qsy PM&前端 完成前端功能 ...
- 【二食堂】Beta - Scrum Meeting 6
Scrum Meeting 6 例会时间:5.19 18:30~18:50 进度情况 组员 当前进度 今日任务 李健 1. 实体标注的优化基本已经实现,后端有bug,还没有进行接口调用 issue 2 ...
- [技术博客]WEB实现划词右键操作
[技术博客]WEB实现划词右键操作 一.功能解释 简单地对题目中描述的功能进行解释:在浏览器中,通过拖动鼠标选中一个词(或一段文字),右键弹出菜单,且菜单为自定义菜单,而非浏览器本身的菜单.类似的功能 ...
- 贪心-Saruman‘s Army POJ - 3069
万恶之源 目录 题意 思路 贪心的原则是什么呢? 错解 正解 代码实现 书上的代码 我的代码 比较一下 问题 题意 给定若干个点的坐标,与范围R.每个点可以选择是否标记,标记后这个点的左右范围R内的所 ...
- 前端面试手写代码——JS数组去重
目录 1 测试用例 2 JS 数组去重4大类型 2.1 元素比较型 2.1.1 双层 for 循环逐一比较(es5常用) 2.1.2 排序相邻比较 2.2 查找元素位置型 2.2.1 indexOf ...
- 跟着老猫来搞GO,集跬步而致千里
上次博客中,老猫已经和大家同步了如何搭建相关的GO语言的开发环境,相信在车上的小伙伴应该都已经搞定了环境了.那么本篇开始,我们就来熟悉GO语言的基础语法.本篇搞定之后,其实期待大家可以和老猫一样,能够 ...
- Hive计算最大连续登陆天数
目录 一.背景 二.算法 1. 第一步:排序 2. 第二步:第二列与第三列做日期差值 3. 第三步:按第二列分组求和 4. 第四步:求最大次数 三.扩展(股票最大涨停天数) 强哥说他发现了财富密码,最 ...
- Piakchu之RCE漏洞
一.Ping(远程系统命令执行) 首先正常输入一个ip,查看页面的返回值.发现有乱码,但是能看出执行了ping命令. 查看源代码,可以看到只是对操作系统进行了判断,而对输入内容是否为ip地址并没有判断 ...
- MySQL怎么缓解读的压力的?---buffer pool
每当我们想要缓解读,一般会想到什么? 预读取,缓存 缓存 缓存,其实就是将高频访问的数据放到内存里面,减少读盘的次数. 为了提高内存的利用率,MySQL还建立了缓存池,也就是buffer pool,存 ...
- linux 虚拟网络设备的使用
1. linux 常见虚拟网络设备分类 常见虚拟网络设备有:bridge, tun/tap, veth-pairs, macvlan, macvtap等.有一篇博文写的挺好的,图文并茂:虚拟网络设备, ...