本文将同步发布于:

题目

题目链接:洛谷 AT4693AtCoder agc031_c

题意概述

给定三个数 \(n,a,b\),求一个 \(0\sim 2^n-1\) 的排列满足下列三个条件:

  • \(p_1=a\);
  • \(p_{2^n}=b\);
  • \(\operatorname{popcount}(p_i\oplus p_{i+1})=1\),其中 \(\oplus\) 表示按位异或。

请你判定是否可以构造并输出方案(若可以)。

题解

启发式的画图

直接考虑这个问题,似乎有些困难?

我们先用简单的语言,将它转化为一个图论问题。

图论转化

如果两个整数 \(a,b\in[0,2^n)\),满足 \(\operatorname{popcount}(a\oplus b)=1\),那么我们就在 \(a,b\) 之间连一条边。

那么问题转化为了给定起点与终点,求一条长度为 \(2^n\) 的简单路径。


转化成了图论问题,我们肯定要用几何直观来看看这个图到底是什么样子,采用画图工具 Graph Editor,取 \(n=2,3\) 时:

图片 \(n=2\):

图片 \(n=3\):

这提醒我们,整个图将会形成一个 \(n\) 维立方体。

具体地,我们考虑证明这件事,非常简单,换个角度即可。我们将一个二进制数各位上的数分开,看作各个维度的坐标值,例如 \(0=(00)_2\to (0,0),2=(10)_2\to (1,0)\)。那么我们不难得到此结论。

熟练解决图论问题

我们不难发现,这个图是一个二分图,其中左部点编号对应的二进制数中 \(1\) 的个数为偶数,右部点编号对应的二进制数中 \(1\) 的个数为奇数。

我们由此得到结论,如果存在答案,那么 \(\operatorname{popcount}(a\oplus b)\equiv 1\pmod 2\)。

这个条件对解的必要性已经得到证明,下面我们通过构造来证明其充分性。

构造与递推

首先为了化简问题,我们不难发现从 \(a\) 走到 \(b\) 等价于从 \(0\) 走到 \(a\oplus b\),这是因为异或的自反律与交换律,即 \(p_i\oplus x\oplus p_{i+1}\oplus x=p_i\oplus p_{i+1}\)。

对于 \(n\) 维立方体,它一定是由两个 \(n-1\) 维立方体上下拼接而成。

因此,我们考虑用类似数学归纳法的方式进行构造。

我们具有归纳基础,因为显然我们会 \(n=1\) 时的情况(一条线段从 \(0\) 走到 \(1\));

我们考虑如何通过 \(n-1\) 维的方案构造 \(n\) 维的方案,我们决定分类讨论:

  • 根据上面的理论,我们分类讨论终点的位置(起点为 \(0\));
  • 终点 \(t\) 与起点在不同的层:我们找到一条合法的从起点走 \(n-1\) 维空间到达 \(x\) 的方案,然后 \(x\) 走到另一层对应的点 \(x'\),再在 \(n-1\) 维空间中从 \(0\) 走到 \(t\oplus x'\) 的方案,\(x\) 可任取;
  • 终点 \(t\) 与起点在同一层:我们直接从 \(0\) 走到 \(t\),然后把路径从路径中任意两个相邻点之间直接分割开来,在中间插入一个下层的 \(n-1\) 维的路径。

上面的文字叙述可能有点难懂,我们画个三维空间的图:

第一种情况:

第二种情况:

至此,我们用构造的方法证明了条件的充分性,可解决本题。

时间复杂度为 \(T(n)=2T(n-1)+\Theta(2^n)\),分析可知为 \(\Theta(2^nn)\)。

参考程序

参考程序中情况一选取 \(x=1\),情况二选取起点和路径的第二个点。

__builtin_parity(x) 表示求 \(x\) 的二进制表示中 \(1\) 的个数的奇偶性,奇数为 \(1\),偶数为 \(0\)。

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define flush() (fwrite(wbuf,1,wp1,stdout),wp1=0)
#define putchar(c) (wp1==wp2&&(flush(),0),wbuf[wp1++]=c)
static char wbuf[1<<21];int wp1;const int wp2=1<<21; inline void write(reg int x){
static char buf[32];
reg int p=-1;
if(!x) putchar('0');
else while(x) buf[++p]=(x%10)^'0',x/=10;
while(~p) putchar(buf[p--]);
return;
} inline void writeln(const char *s){
while(*s) putchar(*(s++));
putchar('\n');
return;
} const int MAXN=17; inline void solve(reg int x,reg int a,reg int ans[]){
if(!x)
ans[0]=0;
else if(x==1)
ans[0]=0,ans[1]=1;
else{
reg int val=1<<(x-1);
if(a&val){
solve(x-1,1,ans),solve(x-1,a^(val+1),ans+val);
for(reg int i=val;i<(1<<x);++i)
ans[i]=ans[i]^(val+1);
}
else{
solve(x-1,a,ans),solve(x-1,ans[1],ans+val);
for(reg int i=val;i<(1<<x);++i)
ans[i]=ans[i]^val;
static int tmp[1<<MAXN];
tmp[0]=ans[0];
for(reg int i=0;i<val;++i)
tmp[i+1]=ans[i+val];
for(reg int i=val+1;i<(1<<x);++i)
tmp[i]=ans[i-val];
for(reg int i=0;i<(1<<x);++i)
ans[i]=tmp[i];
}
}
return;
} int n,A,B;
int ans[1<<MAXN]; int main(void){
scanf("%d%d%d",&n,&A,&B);
B^=A;
if(__builtin_parity(B)){
writeln("YES");
solve(n,B,ans);
reg int U=(1<<n)-1;
for(reg int i=0;i<=U;++i)
write(ans[i]^A),putchar(i==U?'\n':' ');
}
else
writeln("NO");
flush();
return 0;
}

「题解」agc031_c Differ by 1 Bit的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. SQLServer的XP_CmdShell提权

    当我们拿到了某个网站SQLServer数据库的SA权限用户密码的话,我们就可以使用XP_CmdShell提权了. 开启xp_cmdshell exec sp_configure 'show advan ...

  2. Sublime text3 的破解

    下载sublimeText3的安装包并安装(已经安装的可以忽略) 在hosts文件中添加:127.0.0.1 license.sublimehq.com(hosts文件地址:C:\Windows\Sy ...

  3. Jmeter软件安装之Mac

    Jmeter软件安装之Mac 一.环境准备 安装JDK 下载Jmeter 二.下载Jmeter 下载地址: http://jmeter.apache.org/download_jmeter.cgi,下 ...

  4. 21.Quick QML-FileDialog、FolderDialog对话框

    1.FileDialog介绍 Qt Quick中的FileDialog文件对话框支持的平台有: 笔者使用的是Qt 5.8以上的版本,模块是import Qt.labs.platform 1.1. 它的 ...

  5. (数据科学学习手札121)Python+Dash快速web应用开发——项目结构篇

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...

  6. Journey to the future begins

    当提交申请的那一刻,我就更加确认了自己想要走的路,慢慢一路向上,追求自己想要的生活! 2021.5.18 wzb

  7. JAVA基础——变量、常量

    变量 java中,变量时最基本的存储单元,其要素包括变量名,变量类型和作用域. 注意事项: 每个变量都有类型,类型可以是基本类型,也可以是引用类型. 变量名必须是合法的标识符 变量声明时一条完整的语句 ...

  8. 戴尔服务器如何配置远程管理卡(IDRAC9)适用于戴尔R740服务器

    戴尔服务器如何配置远程管理卡(IDRAC9)适用于戴尔R740服务器 转: DELL IDRAC9 该配置方法适合于所有戴尔14G服务器,包括全系列戴尔服务器,标准版适用于R440/R540/R640 ...

  9. SecureCRT配置自动记录日志

    很多人用SecureCRT时,希望自动记录日志,一个是方便以后查阅,一个是对自己的操作有个记录.可以看看自己做了什么操作,有时甚至可以看看之前是不是犯了什么错,是个很不错的功能. 设置很简单,还可以根 ...

  10. 11.19 rpm:RPM包管理器

    rpm命令的全称是Red Hat Package Manager(Red Hat包管理器),几乎所有的Linux发行版本都使用了这种形式的命令管理.安装.更新和卸载软件. 概括地说,rpm命令包含了五 ...