Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information processing systems, 2009: 342-350.

@article{cho2009kernel,

title={Kernel Methods for Deep Learning},

author={Cho, Youngmin and Saul, Lawrence K},

pages={342--350},

year={2009}}

这篇文章介绍了一种新的核函数, 其启发来自于神经网络的运算.



其中\(\Theta(z)=\frac{1}{2}(1+\mathrm{sign}(z))\).

主要内容

主要性质, 公式(1)可以表示成:

\[k_n(\mathbf{x}, \mathbf{y}) = \frac{1}{\pi} \|\mathbf{x}\|^n\|\mathbf{y}\|^n J_n(\theta).
\tag{2}
\]

其中:

\[J_n(\theta) = (-1)^n (\sin \theta)^{2n+1} (\frac{1}{\sin \theta} \frac{\partial}{\partial \theta})^n(\frac{\pi-\theta}{\sin \theta}).
\tag{3}
\]
\[\theta = \cos^{-1} (\frac{\mathbf{x}\cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}).
\tag{4}
\]

特别的:

其证明如下:



第(17)的证明我没有推, 因为 contour integration 暂时不了解.

细心的读者可能会发现, 最后的结果是\(\frac{\partial^n}{\partial(\cos \theta)^n}\), 注意对于一个函数\(f(\cos \theta)\), 我们可以令\(g(\theta) = f(\cos \theta)\)则:

\[\frac{\partial f}{\partial \cos \theta} = \frac{\partial{g}}{\partial \theta} \frac{\partial\theta}{\partial \cos \theta},
\]

\[\mathrm{d}\cos \theta =-\sin \theta \mathrm{d} \theta.
\]

便得结论.

与深度学习的联系

如果我们把注意力集中在某一层, 假设输入为\(\mathbf{x}\), 输出为:

\[\mathbf{f}(\mathbf{x}) = g(W\mathbf{x}) \in \mathbb{R}^m,
\]

其中\(g(z) = \Theta(z) z^n\)是激活函数, 不同的n有如下的表现:



\(n=1\)便是我们熟悉的ReLU.

考虑俩个输入\(\mathbf{x},\mathbf{y}\)所对应的输出\(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{y})\)的内积:

\[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{y}) = \sum_{i=1}^m \Theta(\mathbf{w}_i \cdot \mathbf{x}) \Theta(\mathbf{w}_i \cdot \mathbf{y}) (\mathbf{w}_i \cdot \mathbf{x})^n (\mathbf{w}_i \cdot \mathbf{y})^n
\]

如果每个权重\(W_{ij}\)都服从标准正态分布, 则:

\[\lim_{m \rightarrow \infty} \frac{2}{m} \mathbf{f} (\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) = k_n(\mathbf{x}, \mathbf{y}).
\]

实验

实验失败了, 代码如下.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import NuSVC
"""
Arc_cosine kernel
"""
class Arc_cosine: def __init__(self, n=1):
self.n = n
self.own_kernel = self.kernels(n) def kernel0(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
return 1 - angle / np.pi def kernel1(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
sin_value = np.sin(angle)
return (norm_x * norm_y) ** self.n * \
(sin_value + (np.pi - angle) *
cos_value) / np.pi def kernel2(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
sin_value = np.sin(angle)
return (norm_x * norm_y) ** self.n * \
3 * sin_value * cos_value + \
(np.pi - angle) * (1 + 2 * cos_value ** 2) def kernels(self, n):
if n is 0:
return self.kernel0
elif n is 1:
return self.kernel1
elif n is 2:
return self.kernel2
else:
raise ValueError("No such kernel, n should be "
"0, 1 or 2") def kernel(self, X, Y):
m = X.shape[0]
n = Y.shape[0]
C = np.zeros((m, n))
for i in range(m):
for j in range(n):
C[i, j] = self.own_kernel(
X[i], Y[j]
)
return C def __call__(self, X, Y):
return self.kernel(X, Y)

在俩个数据上进行SVM, 数据如下:





在SVM上跑:

'''
#生成圈圈数据
def generate_data(circle, r1, r2, nums=300):
variance = 1
rs1 = np.random.randn(nums) * variance + r1
rs2 = np.random.randn(nums) * variance + r2
angles = np.linspace(0, 2*np.pi, nums)
data1 = (rs1 * np.sin(angles) + circle[0],
rs1 * np.cos(angles) + circle[1])
data2 = (rs2 * np.sin(angles) + circle[0],
rs2 * np.cos(angles) + circle[1])
df1 = pd.DataFrame({'x':data1[0], 'y': data1[1],
'label':np.ones(nums)})
df2 = pd.DataFrame({'x':data2[0], 'y': data2[1],
'label':-np.ones(nums)}) return df1, df2
''' #生成十字数据
def generate_data(left, right, down, up,
circle=(0., 0.), nums=300):
variance = 1
y1 = np.random.rand(nums) * variance + circle[1]
x2 = np.random.rand(nums) * variance + circle[0]
x1 = np.linspace(left, right, nums)
y2 = np.linspace(down, up, nums)
df1 = pd.DataFrame(
{'x': x1,
'y': y1,
'label':np.ones_like(x1)}
)
df2 = pd.DataFrame(
{'x': x2,
'y': y2,
'label':-np.ones_like(x2)}
)
return df1, df2 def pre_test(left, right, func, nums=100):
x1, y1 = left
x2, y2 = right
x = np.linspace(x1, x2, nums)
y = np.linspace(y1, y2, nums)
X,Y = np.meshgrid(x,y)
m, n = X.shape
Z = func(np.vstack((X.reshape(1, -1),
Y.reshape(1, -1))).T).reshape(m, n) return X, Y, Z df1, df2 = generate_data(-10, 10, -10, 10)
df = df1.append(df2)
classifer2 = NuSVC(kernel=Arc_cosine(n=1))
classifer2.fit(df.iloc[:, :2], df['label'])
X, Y, Z = pre_test((-10, -10), (10, 10), classifer2.predict)
plt.contourf(X, Y, Z)
plt.show()

预测结果均为:

而在一般的RBF上, 结果都是很好的:

在多项式核上也ok:

如果有人能发现代码中的错误,请务必指正.

Kernel Methods for Deep Learning的更多相关文章

  1. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  2. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  3. Paper List ABOUT Deep Learning

    Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...

  4. Deep Learning方向的paper

    转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但 ...

  5. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  6. Deep Learning and the Triumph of Empiricism

    Deep Learning and the Triumph of Empiricism By Zachary Chase Lipton, July 2015 Deep learning is now ...

  7. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  8. My deep learning reading list

    My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...

  9. Deep Learning关于Vision的Reading List

    最近开始学习深度学习了,加油! 下文转载自:http://blog.sina.com.cn/s/blog_bda0d2f10101fpp4.html 主要是顺着Bengio的PAMI review的文 ...

随机推荐

  1. 在windows 10家庭版上安装docker的步骤

    本人之前写Redis书和Spring Cloud Alibaba书时,发现一些分布式组件更适合安装在linux环境,而在搭建Redis等集群时,更需要linux环境. 本人日常练习代码和写书所用的机器 ...

  2. Spark集群环境搭建——部署Spark集群

    在前面我们已经准备了三台服务器,并做好初始化,配置好jdk与免密登录等.并且已经安装好了hadoop集群. 如果还没有配置好的,参考我前面两篇博客: Spark集群环境搭建--服务器环境初始化:htt ...

  3. 时光网内地影视票房Top100爬取

    为了和艺恩网的数据作比较,让结果更精确,在昨天又写了一个时光网信息的爬取,这次的难度比艺恩网的大不少,话不多说,先放代码 # -*- coding:utf-8 -*-from __future__ i ...

  4. ACE_Message_Block实现浅析

    ACE_Message_Block实现浅析1. 概述ACE_Message_Block是ACE中很重要的一个类,和ACE框架中的重要模式的实现 如ACE_Reactor, ACE_Proactor, ...

  5. 查看IP访问量的shell脚本汇总

    第一部分,1,查看TCP连接状态 netstat -nat |awk '{print $6}'|sort|uniq -c|sort -rn netstat -n | awk '/^tcp/ {++S[ ...

  6. Spring Boot项目的探究

    一.pom.xml文件 1.父项目 <parent> <groupId>org.springframework.boot</groupId> <artifac ...

  7. 【Java】基本语法学习笔记

    1.数组 *数组的创建 int[] array = {1,2,3,4,5}; 注意区别于C++ int a[] = (1)两种输出方法 public class number { public sta ...

  8. 1 - 基于ELK的ElasticSearch 7.8.x 技术整理 - 基础语法篇 - 更新完毕

    准备工作 0.什么是ElasticSearch?它和Lucene以及solr的关系是什么? 这些是自己的知识获取能力,自行百度百科 1.下载ElasticSearch的window版,linux版后续 ...

  9. Mysql配置文件 16c64g优化

    目录 一.说明 二.配置 一.说明 以下配置适合16核64G及以上的配置,会让性能稍微提高1/3左右. 二.配置 my.cnf [client] port = 3306 socket = /usr/l ...

  10. Identity Server 4 从入门到落地(十二)—— 使用Nginx集成认证服务

    前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...