Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information processing systems, 2009: 342-350.

@article{cho2009kernel,

title={Kernel Methods for Deep Learning},

author={Cho, Youngmin and Saul, Lawrence K},

pages={342--350},

year={2009}}

这篇文章介绍了一种新的核函数, 其启发来自于神经网络的运算.



其中\(\Theta(z)=\frac{1}{2}(1+\mathrm{sign}(z))\).

主要内容

主要性质, 公式(1)可以表示成:

\[k_n(\mathbf{x}, \mathbf{y}) = \frac{1}{\pi} \|\mathbf{x}\|^n\|\mathbf{y}\|^n J_n(\theta).
\tag{2}
\]

其中:

\[J_n(\theta) = (-1)^n (\sin \theta)^{2n+1} (\frac{1}{\sin \theta} \frac{\partial}{\partial \theta})^n(\frac{\pi-\theta}{\sin \theta}).
\tag{3}
\]
\[\theta = \cos^{-1} (\frac{\mathbf{x}\cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}).
\tag{4}
\]

特别的:

其证明如下:



第(17)的证明我没有推, 因为 contour integration 暂时不了解.

细心的读者可能会发现, 最后的结果是\(\frac{\partial^n}{\partial(\cos \theta)^n}\), 注意对于一个函数\(f(\cos \theta)\), 我们可以令\(g(\theta) = f(\cos \theta)\)则:

\[\frac{\partial f}{\partial \cos \theta} = \frac{\partial{g}}{\partial \theta} \frac{\partial\theta}{\partial \cos \theta},
\]

\[\mathrm{d}\cos \theta =-\sin \theta \mathrm{d} \theta.
\]

便得结论.

与深度学习的联系

如果我们把注意力集中在某一层, 假设输入为\(\mathbf{x}\), 输出为:

\[\mathbf{f}(\mathbf{x}) = g(W\mathbf{x}) \in \mathbb{R}^m,
\]

其中\(g(z) = \Theta(z) z^n\)是激活函数, 不同的n有如下的表现:



\(n=1\)便是我们熟悉的ReLU.

考虑俩个输入\(\mathbf{x},\mathbf{y}\)所对应的输出\(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{y})\)的内积:

\[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{y}) = \sum_{i=1}^m \Theta(\mathbf{w}_i \cdot \mathbf{x}) \Theta(\mathbf{w}_i \cdot \mathbf{y}) (\mathbf{w}_i \cdot \mathbf{x})^n (\mathbf{w}_i \cdot \mathbf{y})^n
\]

如果每个权重\(W_{ij}\)都服从标准正态分布, 则:

\[\lim_{m \rightarrow \infty} \frac{2}{m} \mathbf{f} (\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) = k_n(\mathbf{x}, \mathbf{y}).
\]

实验

实验失败了, 代码如下.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import NuSVC
"""
Arc_cosine kernel
"""
class Arc_cosine: def __init__(self, n=1):
self.n = n
self.own_kernel = self.kernels(n) def kernel0(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
return 1 - angle / np.pi def kernel1(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
sin_value = np.sin(angle)
return (norm_x * norm_y) ** self.n * \
(sin_value + (np.pi - angle) *
cos_value) / np.pi def kernel2(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
sin_value = np.sin(angle)
return (norm_x * norm_y) ** self.n * \
3 * sin_value * cos_value + \
(np.pi - angle) * (1 + 2 * cos_value ** 2) def kernels(self, n):
if n is 0:
return self.kernel0
elif n is 1:
return self.kernel1
elif n is 2:
return self.kernel2
else:
raise ValueError("No such kernel, n should be "
"0, 1 or 2") def kernel(self, X, Y):
m = X.shape[0]
n = Y.shape[0]
C = np.zeros((m, n))
for i in range(m):
for j in range(n):
C[i, j] = self.own_kernel(
X[i], Y[j]
)
return C def __call__(self, X, Y):
return self.kernel(X, Y)

在俩个数据上进行SVM, 数据如下:





在SVM上跑:

'''
#生成圈圈数据
def generate_data(circle, r1, r2, nums=300):
variance = 1
rs1 = np.random.randn(nums) * variance + r1
rs2 = np.random.randn(nums) * variance + r2
angles = np.linspace(0, 2*np.pi, nums)
data1 = (rs1 * np.sin(angles) + circle[0],
rs1 * np.cos(angles) + circle[1])
data2 = (rs2 * np.sin(angles) + circle[0],
rs2 * np.cos(angles) + circle[1])
df1 = pd.DataFrame({'x':data1[0], 'y': data1[1],
'label':np.ones(nums)})
df2 = pd.DataFrame({'x':data2[0], 'y': data2[1],
'label':-np.ones(nums)}) return df1, df2
''' #生成十字数据
def generate_data(left, right, down, up,
circle=(0., 0.), nums=300):
variance = 1
y1 = np.random.rand(nums) * variance + circle[1]
x2 = np.random.rand(nums) * variance + circle[0]
x1 = np.linspace(left, right, nums)
y2 = np.linspace(down, up, nums)
df1 = pd.DataFrame(
{'x': x1,
'y': y1,
'label':np.ones_like(x1)}
)
df2 = pd.DataFrame(
{'x': x2,
'y': y2,
'label':-np.ones_like(x2)}
)
return df1, df2 def pre_test(left, right, func, nums=100):
x1, y1 = left
x2, y2 = right
x = np.linspace(x1, x2, nums)
y = np.linspace(y1, y2, nums)
X,Y = np.meshgrid(x,y)
m, n = X.shape
Z = func(np.vstack((X.reshape(1, -1),
Y.reshape(1, -1))).T).reshape(m, n) return X, Y, Z df1, df2 = generate_data(-10, 10, -10, 10)
df = df1.append(df2)
classifer2 = NuSVC(kernel=Arc_cosine(n=1))
classifer2.fit(df.iloc[:, :2], df['label'])
X, Y, Z = pre_test((-10, -10), (10, 10), classifer2.predict)
plt.contourf(X, Y, Z)
plt.show()

预测结果均为:

而在一般的RBF上, 结果都是很好的:

在多项式核上也ok:

如果有人能发现代码中的错误,请务必指正.

Kernel Methods for Deep Learning的更多相关文章

  1. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  2. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  3. Paper List ABOUT Deep Learning

    Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...

  4. Deep Learning方向的paper

    转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但 ...

  5. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  6. Deep Learning and the Triumph of Empiricism

    Deep Learning and the Triumph of Empiricism By Zachary Chase Lipton, July 2015 Deep learning is now ...

  7. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  8. My deep learning reading list

    My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...

  9. Deep Learning关于Vision的Reading List

    最近开始学习深度学习了,加油! 下文转载自:http://blog.sina.com.cn/s/blog_bda0d2f10101fpp4.html 主要是顺着Bengio的PAMI review的文 ...

随机推荐

  1. Spark(七)【RDD的持久化Cache和CheckPoint】

    RDD的持久化 1. RDD Cache缓存 ​ RDD通过Cache或者Persist方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM的堆内存中.但是并不是这两个方法被调用时立即缓存,而是 ...

  2. 为什么CTR预估使用AUC来评估模型?

    ctr预估简单的解释就是预测用户的点击item的概率.为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答. 1.ctr预估是特殊的回归问题 ctr预估的目标函 ...

  3. 【分布式】ZooKeeper权限控制之ACL(Access Control List)访问控制列表

    zk做为分布式架构中的重要中间件,通常会在上面以节点的方式存储一些关键信息,默认情况下,所有应用都可以读写任何节点,在复杂的应用中,这不太安全,ZK通过ACL机制来解决访问权限问题,详见官网文档:ht ...

  4. adb命令对app进行测试

    1.何为adb adb android  debug  bridge ,sdk包中的工具,将Platform-tooks 和tools  两个路径配置到环境变量中 2.SDK下载链接:http://t ...

  5. OpenStack之七: compute服务(端口8774)

    注意此处的bug,参考o版 官网地址 https://docs.openstack.org/nova/stein/install/controller-install-rdo.html 控制端配置 # ...

  6. Jenkins获取jar包的快照号

    目录 一.简介 二.脚本 一.简介 主要用于打jar包的工程,显示快照包的名字.当jar打包完成后,会在target目录中,截取快照名. 二.脚本 1.脚本return-version.sh #!/b ...

  7. Linux入侵 反弹shell

    目录 一.简介 二.命令 三.NetCat 一.简介 黑入服务器很少会是通过账号密码的方式进入,因为这很难破解密码和很多服务器都做了限制白名单. 大多是通过上传脚本文件,然后执行脚本开启一个端口,通过 ...

  8. &和nohup

    目录 一.简介 二.& 三.nohup 一.简介 当我们在终端或控制台工作时,可能不希望由于运行一个作业而占住了屏幕,因为可能还有更重要的事情要做,比如阅读电子邮件.对于密集访问磁盘的进程,我 ...

  9. mit6.830-lab2-常见算子和 volcano 执行模型

    一.实验概览 github : https://github.com/CreatorsStack/CreatorDB 这个实验需要完成的内容有: 实现过滤.连接运算符,这些类都是继承与OpIterat ...

  10. 在eclipse打开jsp文件变成文本的解决:

    在eclipse打开jsp文件变成文本的解决: ------原因:可能是不小心删除某些组件等等一些操作 1,考虑一下是否还有插件jsp 编辑器组件 选择内部编辑器[在下面选择 JSP Editor]- ...