\(\mathcal{Description}\)

  Link.

  给定 \(n,s,a_0,a_1,a_2,a_3\),求:

\[\sum_{i=0}^n\binom{n}is^ia_{i\bmod4}\bmod998244353
\]

  多测,数据组数 \(\le10^5\),\(n\le10^{18}\),其余输入 \(\le10^8\)。

\(\mathcal{Solution}\)

  单位根反演板题。记一个函数 \(f\) 有:

\[\begin{aligned}
f(x)&=\sum_{i=0}^n\binom{n}is^ix^i\\
&=(sx+1)^n
\end{aligned}
\]

  问题即求 \(i\bmod4=0,1,2,3\) 时 \(a_i\) 倍 \([x^i]f(x)\) 之和。以 \(i\bmod4=0\) 为例:

\[\begin{aligned}
\sum_{i=0}^n[4|i]a_0[x^i]f(x)&=\frac{1}4a_0\sum_{i=0}^n\left(\sum_{j=0}^3\omega_4^{ij}\right)\binom{n}is^i\\
&=\frac{1}4a_0\sum_{j=0}^3f(\omega_4^j)
\end{aligned}
\]

  直接代四个单位根进去算出来即可。对于其他三个 \(i\bmod4\) 的值,将 \(f\) 的各系数位移就能类似地求出答案。

  复杂度 \(\mathcal O(T\log n)\)(\(\times4^2\) 的常数)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) typedef long long LL; inline LL rint () {
LL x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} const int MOD = 998244353, G = 3, INV4 = 748683265;
LL n;
int w[4], s, a[4]; inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
} inline int f ( const int x ) {
return mpow ( add ( mul ( s, x ), 1 ), n );
} int main () {
w[0] = 1, w[1] = mpow ( G, MOD - 1 >> 2 );
w[2] = mul ( w[1], w[1] ), w[3] = mul ( w[2], w[1] );
for ( int T = rint (); T--; ) {
n = rint () % ( MOD - 1 ), s = rint ();
rep ( i, 0, 3 ) a[i] = rint ();
int ans = 0;
rep ( r, 0, 3 ) {
int res = 0;
rep ( i, 0, 3 ) {
res = add ( res,
mul ( f ( w[i] ), mpow ( w[r * i & 3], MOD - 2 ) ) );
}
ans = add ( ans, mul ( res, a[r] ) );
}
wint ( mul ( ans, INV4 ) ), putchar ( '\n' );
}
return 0;
}

Solution -「LOJ #6485」 LJJ 学二项式定理的更多相关文章

  1. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  2. Solution -「LOJ #6029」「雅礼集训 2017」市场

    \(\mathcal{Description}\)   Link.   维护序列 \(\lang a_n\rang\),支持 \(q\) 次如下操作: 区间加法: 区间下取整除法: 区间求最小值: 区 ...

  3. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  4. Solution -「LOJ #141」回文子串 ||「模板」双向 PAM

    \(\mathcal{Description}\)   Link.   给定字符串 \(s\),处理 \(q\) 次操作: 在 \(s\) 前添加字符串: 在 \(s\) 后添加字符串: 求 \(s\ ...

  5. Solution -「LOJ #150」挑战多项式 ||「模板」多项式全家桶

    \(\mathcal{Description}\)   Link.   给定 \(n\) 次多项式 \(F(x)\),在模 \(998244353\) 意义下求 \[G(x)\equiv\left\{ ...

  6. Solution -「LOJ #6053」简单的函数

    \(\mathcal{Description}\)   Link.   积性函数 \(f\) 满足 \(f(p^c)=p\oplus c~(p\in\mathbb P,c\in\mathbb N_+) ...

  7. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  8. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  9. LOJ6485 LJJ 学二项式定理 解题报告

    LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...

随机推荐

  1. Maven+ajax+SSM实现编辑修改

    转载自:https://www.cnblogs.com/kebibuluan/p/9017754.html 3.尚硅谷_SSM高级整合_使用ajax操作实现修改员工的功能 当我们点击编辑案例的时候,我 ...

  2. Static 静态+this

    (一):静态 1.Static修饰的都是静态的,都是类相关的,不需要new对象,直接采用类名.的方式访问 2.当一个属性是类级别的,所有对象的这个属性都是一样的,直接定义为静态 类=属性+方法 属性描 ...

  3. 创客系列教程——认识LED灯

    认识LED灯 一.初识LED灯   LED灯是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光.LED灯逐步融入到生活中的方方面面:室内外的照明.电子指示牌.酷炫的舞台灯光.车辆的 ...

  4. IK 分词器

    目录 IK 分词器-介绍 IK 分词器-安装 环境准备:Maven 安装 IK 分词器 IK 分词器-使用 IK 分词器-介绍 现有问题:ES 默认对中文分词并不友好,实际上是把中文进行了每个字的分词 ...

  5. Flowable实战(二)集成Springboot

    1.创建Springboot项目   打开IDEA,通过File -> New -> Project- -> Spring Initializr 创建一个新的Springboot项目 ...

  6. PAT 乙级 1003. 我要通过!(20) (C语言描述)

    "答案正确"是自动判题系统给出的最令人欢喜的回复.本题属于PAT的"答案正确"大派送 -- 只要读入的字符串满足下列条件,系统就输出"答案正确&quo ...

  7. STM32 EXTI(外部中断)

    一.EXTI 简介 EXTI(External interrupt/event controller)-外部中断/事件控制器,管理了控制器的 20个中断/事件线.每个中断/事件线都对应有一个边沿检测器 ...

  8. 【Java常用类】BigInteger

    BigInteger Integer类作为int的包装类,能存储的最大整型值为2^31-1,Long类也是有限的, 最大为2 ^63-1.如果要表示再大的整数,不管是基本数据类型还是他们的包装类 都无 ...

  9. 《剑指offer》面试题19. 正则表达式匹配

    问题描述 请实现一个函数用来匹配包含'. '和'*'的正则表达式.模式中的字符'.'表示任意一个字符,而'*'表示它前面的字符可以出现任意次(含0次).在本题中,匹配是指字符串的所有字符匹配整个模式. ...

  10. 微服务架构 | 3.4 HashiCorp Consul 注册中心

    目录 前言 1. Consul 基础知识 1.1 Consul 是什么 1.2 Consul 的特点 2. 安装并运行 Consul 服务器 2.1 下载 Consul 2.2 运行 Consul 服 ...