前言的前言

本 TJ 同步发布于洛谷,在线求赞(bushi

前言

蒟蒻第一篇题解,在线求审核大大给过 awa。

如果此题解有什么问题的话欢迎各位大巨佬提出。

题目链接:CF877B

题目类型:dp,一讲就会,一做就废(;′⌒`)。


更新

2021/5/31:因为帮同学调代码添加了新发现的滚动数组问题。


题意简述

给定一个只含有 “a” 和 “b” 的字符串,求这个字符串中最长的子序列,子序列满足以下条件之一:

  1. 全为 “a”。

  2. 全为 “b”。

  3. 开头和结尾是连续的 “a”,中间是连续的 “b”。

字符串长度 \(\leq 5000\)。

题解

算法:动态规划

首先可以发现一个“美丽”的字符串由三个部分组成,所以我们可以开一个二维的 \(dp\) 数组。其含义如下:

  • \(dp_{i,1}\) 代表字符串只包含第一部分,从 \(1\sim i\) 能取到的最长长度;

  • \(dp_{i,2}\) 代表字符串包含第一部分和第二部分,从 \(1\sim i\) 能取到的最长长度;

  • \(dp_{i,3}\) 代表字符串包含所有部分,从 \(1\sim i\) 能取到的最长长度。

因为每个部分都可以是空串,所以最后的答案可以为 \(dp_{i,1},dp_{i,2},dp_{i,3}\) 的任意一种,取最大值。

然后思考如何转移状态。

首先 \(dp_{i,1}\) 是很好求的,我们只需要求解字符串里面有多少个 “a” 就可以了。这个很好想,要求解一个字符串中最长的只包含 “a” 或为空的子序列,只需统计 “a” 的个数,让所有的 “a” 都加入子序列。

当然我们不需要每次都用一个循环求解,可以参照前缀和的方式求解 “a” 的个数:

dp[i][1]=dp[i-1][1]+(a[i]=='a');

(如果这个字符是 “a” 就 \(+1\),反之不加)

接着考虑 \(dp_{i,2}\) 的求法。实际上,我们可以用另一种方式理解前面求 \(dp_{i,1}\),把它当做动态转移方程而并不是一个简单的求前缀和的式子:

  • 如果这个字符是 “a”,那么一定要选,然后再加上前 \(i-1\) 个字符能拿到的最长的长度。

那么,\(dp_{i,2}\) 的解法就呼之欲出了:

dp[i][1]=max(dp[i][1],dp[i][2])+(a[i]=='b');

因为第一部分和第二部分都可以是空串,所以一个全为 “a” 的字符串同样可以作为第二部分的结果,所以需要求最大值。最后的那个 “b” 也是一样的,因为如果这个字符串不是一个全为 “a” 的字符串,就必须以 “b” 结束。所以只有后面是 “b” 才能增加字符串的长度,若答案全是 “a” 那就是 \(dp_{i,1}\),与 \(dp_{i,2}\) 的求解是无关的。

\(dp_{i,3}\) 方法类似,需要考虑空串的情况,考虑 \(dp\) 前两维的情况;也需要根据结尾的 “a” 判断不为空的最大值,读者自证不难。

dp[i][3]=max(dp[i][1],dp[i][2],dp[i][3])+(a[i]=='a');

最后可以看到:

我们只有 "\(1,3\) 不空,\(2\) 空"和 "\(1,3\) 空,\(2\) 不空"的情况没有考虑到。但是由于第一个部分和第三个部分本质上是一样的,所以这两种情况可以分别对应到另外两种我们已经考虑过的情况——全为 “a” 或全为 “b”。

\(Code\)

#include<bits/stdc++.h>
using namespace std;
int dp[5005][4],n;
char a[5005];
int main(){
scanf("%s",a+1);
n=strlen(a+1);
for(int i=1;i<=n;i++){
dp[i][1]=dp[i-1][1]+(a[i]=='a');
dp[i][2]=max(dp[i-1][1],dp[i-1][2])+(a[i]=='b');
dp[i][3]=max(dp[i-1][1],max(dp[i-1][2],dp[i-1][3]))+(a[i]=='a');
}
printf("%d",max(dp[n][1],max(dp[n][2],dp[n][3])));
return 0;
}

关于滚动数组

我有个同学一直没过让 me 帮他调代码,然后我发现他用的是滚动数组。

首先要明确这道题是不能在上述代码中直接修改的。因为如果打滚动,例如求 \(dp_{i,3}\) 时需要用到 \(dp_{i-1,2}\) 的值,但是如果打滚动这个值就已经被更新为 \(dp_{i,2}\) 了。

如果要打滚动呢?

很简单,先求 \(dp_{i,3}\),再求 \(dp_{i,2}\),最后求 \(dp_{i,1}\) 就阔以了。


最后希望大家文明浏览,否则陶片两行泪 qwq。

CF877B Nikita and string TJ的更多相关文章

  1. Nikita and string [思维-暴力] ACM

    codeforces Nikita and string time limit per test   2 seconds memory limit per test   256 megabytes O ...

  2. codeforces Round 442 B Nikita and string【前缀和+暴力枚举分界点/线性DP】

    B. Nikita and string time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces Round #877 (Div. 2) B. - Nikita and string

    题目链接:http://codeforces.com/contest/877/problem/B Nikita and string time limit per test2 seconds memo ...

  4. 【Codeforces Round #442 (Div. 2) B】Nikita and string

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举中间那一段从哪里开始.哪里结束就好 注意为空的话,就全是a. 用前缀和优化一下. [代码] #include <bits/ ...

  5. Codeforces Round #442 (Div. 2) B. Nikita and string

    题意:求最长可以分a b a为三部分子串,a b a可以为空 思路在代码里 1 #include<cstdio> 2 #include<iostream> 3 #include ...

  6. webform 分页、组合查询综合使用

    界面: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx ...

  7. Web 组合查询加 分页

    使用ADO.NET 数据访问技术制作web端组合查询加分页的功能关键在于查询SQL语句的拼接 以Car 表为例 每页显示3条数据 数据访问类使用查询方法,tsql 查询的连接字符串,查询的参数放到Ha ...

  8. winform窗体(六)——DataGridView控件及通过此控件中实现增删改查

    DataGridView:显示数据表,通过此控件中可以实现连接数据库,实现数据的增删改查 一.后台数据绑定:    List<xxx> list = new List<xxx> ...

  9. Webform(分页与组合查询配合使用)

    1.封装实体类 2.写查询方法 //SubjectData类 public List<Subject> Select(string name) { List<Subject> ...

随机推荐

  1. 图解 Redis | 差点崩溃了,还好有主从复制

    大家好,我是小林哥,又来图解 Redis 啦. 我在前两篇已经给大家图解了 AOF 和 RDB,这两个持久化技术保证了即使在服务器重启的情况下也不会丢失数据(或少量损失). 不过,由于数据都是存储在一 ...

  2. SystemVerilog 中的相等运算符:== or === ?

    1. 四值逻辑的逻辑运算 在对比SystemVerilog中的相等运算符之前,先来看一下三种最基本的逻辑运算符,下文中以·表示与运算,以+表示或运算,以'表示非运算.我们都知道在逻辑代数中,只有0和1 ...

  3. oscp-缓冲区溢出(持续更新)

    环境准备 Windows7虚拟机(我选了IE8,其实也没什么关系) 微软官方下载地址 These virtual machines expire after 90 days. We recommend ...

  4. Kubernetes之deployment

    Kubernetes实现了零停机的升级过程.升级操作可以通过使用ReplicationController或者ReplicaSet实现,但是Kubernetes提供了另一种基于ReplicaSet的资 ...

  5. 单片机项目中使用新IC芯片的调试方法

    前两天,一位小伙伴咨询我一款新IC芯片怎么使用,借此机会我顺便把我日常工作中经常用到的一种调试方法介绍给小伙伴们,希望对对大家有所帮助.准备仓促,文中难免有技术性错误,欢迎大家给予指正,并给出好的建议 ...

  6. 10.8、mysql日志

    mysql生成或相关联的日志文件种类繁多,这里重点关注与mysql数据库服务相关 的几类日志文件: 1.错误日志: 记录mysql服务进程mysql的在启动/关闭/运行过程中遇到的错误信息: [mys ...

  7. Springboot:单元测试日志打印@Slf4j 注解的使用方法

    当自己写日志的时候,肯定需要: private final Logger logger = LoggerFactory.getLogger(LoggerTest.class); 每次写新的类,就需要重 ...

  8. PHP大文件分片上传的实现方法

    一.前言 在网站开发中,经常会有上传文件的需求,有的文件size太大直接上传,经常会导致上传过程中耗时太久,大量占用带宽资源,因此有了分片上传. 分片上传主要是前端将一个较大的文件分成等分的几片,标识 ...

  9. hdu 2092 整数解(一元二次方程解)

    题目: 思路: 1.两个整数的和和积容易联想到一元二次方程的两个根,只要证明有两个解,并都是整数就打印出Yes,否则打印出No 2.最后判断那步,为什么只需要判断一个整数存在就够了,因为和是整数,一个 ...

  10. ESP-ADF相关学习笔记

    1.makefile:定义了一系列的规则来指定哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为 makefile就像一个Shell脚本一样,也可以执行操作 ...