jzoj4496-[GDSOI2016]互补约数【莫比乌斯反演】
正题
题目链接:https://gmoj.net/senior/#main/show/4496
题目大意
给出\(n\),定义
\]
求
\]
\(1\leq n\leq 10^{11}\)
解题思路
考虑枚举\(x=d\)和\(y=\frac{n}{d}\)
\]
\]
然后莫反
\]
\]
因为要求\(k^2d^2\leq n\)所以可以考虑暴力枚举\(k\)和\(d\),然后最后那个整除分块就好了。
这样会慢几秒,把后面那个式子每次算的时候顺便记忆化了就可以了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const ll N=316228;
ll n,ans,mu[N],pri[N/10],p1[N],p2[N],cnt,S,T;
bool v[N];map<ll,ll> mp;
void Prime(){
mu[1]=1;
for(ll i=2;i<N;i++){
if(!v[i])pri[++cnt]=i,mu[i]=-1;
for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
}
ll GetF(ll n){
ll ans=0;
if(n>=T&&p2[S/n])return p2[S/n];
if(n<T&&p1[n])return p1[n];
for(ll l=1,r;l<=n;l=r+1){
r=n/(n/l);
ans+=(n/l)*(r-l+1);
}
if(n>=T)return p2[S/n]=ans;
return p1[n]=ans;
}
ll GetG(ll n){
ll ans=0;
for(ll i=1;i*i<=n;i++)
ans+=mu[i]*GetF(n/i/i);
return ans;
}
signed main()
{
freopen("gcd.in","r",stdin);
freopen("gcd.out","w",stdout);
Prime();
scanf("%lld",&n);
T=sqrt(n);S=n;
for(ll i=1;i*i<=n;i++)
ans+=i*GetG(n/i/i);
printf("%lld\n",ans);
return 0;
}
jzoj4496-[GDSOI2016]互补约数【莫比乌斯反演】的更多相关文章
- 【BZOJ3994】约数个数和(莫比乌斯反演)
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...
- BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表 ...
- 【BZOJ3994】[SDOI2015] 约数个数和(莫比乌斯反演)
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先 ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- [SDOI2015][bzoj 3994][Luogu P3327] 约数个数和 (莫比乌斯反演)
题目描述 设d(x)d(x)d(x)为xxx的约数个数,给定NNN.MMM,求 ∑i=1N∑j=1Md(ij)\sum^{N}_{i=1}\sum^{M}_{j=1} d(ij)i=1∑Nj=1∑M ...
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...
- [SDOI2015]约数个数和 莫比乌斯反演
---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
随机推荐
- element ui loading加载开启与关闭
参考:https://blog.csdn.net/qq_41877107/article/details/87690555 Vue项目引入element-ui,之后,将以下代码写入 mounted() ...
- WPF 获取主线程
WPF线程获取UI线程 WPF中只能是UI线程才可以改变UI控件相关,当采用多线程工作时,可用以下代码获取 UI线程进行操作: App.Current.Dispatcher.Invoke((Act ...
- JDBC中的元数据——1.数据库元数据
package metadata; import java.sql.Connection; import java.sql.DatabaseMetaData; import javax.sql.Dat ...
- 老鼠走迷宫I
转自:http://blog.csdn.net/holymaple/article/details/8582517 说明:老鼠走迷宫是递回求解的基本提醒,我们在二维阵列中使用2来表示迷宫墙壁,使用1来 ...
- MySQL基础——常用命令
一.连接MySQL 1.启动mysql首先在打开cmd窗口,输入mysql -uroot -p ,然后空格进入MySQL控制台,MySQL的提示符是: mysql>. mysql -uroot ...
- excel快捷键如下:
ALT+ 空格键,然后按下 X ALT+ 空格键,然后按下 R 首先打开表格,在A1对角用鼠标左键单击,界面会全部选中,然后调整字体大小框里的数字,回车,表格就变大了. 同时按Alt和E,再按L ...
- 16 bit 的灰度图如何显示
16 bit 的灰度图如何在QT中显示 用Mat构造的 16 bit 灰度图 无法直接显示,需要转换成 8 bit 的灰度图在QT中显示, 使用OpenCV自带的最大最小值归一法, cv::norma ...
- Swift-Button 的 highlighted(高亮)
摘要 在学习小程序时,看到小程序中的一个样式属性 hover-class,通过设置这个属性,就可以给点击的控件添加一个高亮效果.所以也就萌生了在 Swift 也实现一个类似的功能的想法,开干. 下面代 ...
- MySQL数据完整性约束
主键约束 主键可以是表中的某一列,也可以是表中的多个列所构成的一个组合:其中,由多个列组合而成的主键也称为复合主键.在MySQL中,主键列必须遵守以下规则. (1)每一个表只能定义一个主键. (2)唯 ...
- [源码解析] 深度学习流水线并行 PipeDream(3)--- 转换模型
[源码解析] 深度学习流水线并行 PipeDream(3)--- 转换模型 目录 [源码解析] 深度学习流水线并行 PipeDream(3)--- 转换模型 0x00 摘要 0x01 前言 1.1 改 ...