B树——插入和删除

B树的插入

5阶B数——结点关键字个数向上取整m/2-1≤n≤m-1

即2≤n≤4

连续插入5个元素后,超出来了。

在插入key后,若导致原结点关键字数超过上限,则从中间位置(m/2向上取整)将其中的关键字分为两个部分,左部分包含的关键字放在原结点中,右部分包含的关键字放在新节点中,中间位置(m/2向上取整)的结点插入原结点的父节点

新元素一定是插入到最底层“终端结点”,用“查找”来确定插入位置

在插入key后,若导致原结点关键字数超过上限,则从中间位置(m/2向上取整)将其中的关键字分为两个部分,左部分包含的关键字放在原结点中,右部分包含的关键字放在新节点中,中间位置(m/2向上取整)的结点插入原结点的父节点,again

若此时导致其父节点的关键字个数也超过了上限,则继续进行这种分裂操作,直至这个过程传到根节点为止,进而导致B树高度增1

核心要求:

①对m阶B树——除根节点外,结点关键字个数m/2向上取整-1≤n≤m-1

②子树0<关键字1小于子树1<关键字2<子树2<。。

新元素一定是插入到最底层“终端结点”,用“查找”来确定插入位置

在插入key后,若导致原结点关键字数超过上限,则从中间位置(m/2向上取整)将其中的关键字分为两个部分,左部分包含的关键字放在原结点中,右部分包含的关键字放在新节点中,中间位置(m/2向上取整)的结点插入原结点的父节点。若此时导致其父节点的关键字个数也超过了上限,则继续进行这种分裂操作,直至这个过程传到根节点为止,进而导致B树高度增1

B树的删除



删除60

若被删除关键字在终端节点,则直接删除该关键字(要注意节点关键字个数是否低于下限m/2向上取整-1)

删除80

找直接前驱后者直接后继

若被删除关键字在非终端节点,则用直接前驱后直接后继替代被删除的关键字

直接前驱:当前关键字左侧指针 所指子树中“最右下”的元素

直接后继:当前关键字右侧指针 所指子树中“最左下”的元素

对非终端节点关键字的删除,必然可以转化为对终端节点的删除操作

低于关键字数下限

删除38

若被删除关键字所在节点删除前的关键字个数低于下限,且与此节点右(或左)兄弟节点的关键字个数还很宽裕,则需要调整该节点、右(或左)兄弟节点及其双亲结点(父子换位法)

其实就是在左右兄弟还很宽裕的时候,用当前结点的前驱(后继)、前驱的前驱(后继的后继)来填补空缺

删除90

左兄弟富裕,借下来

本质:永远保证子树0<关键字1小于子树1<关键字2<子树2<。。

删除49

兄弟不够借?

若被删除关键字所在结点删除前的关键字个数低于下限,且此时与该结点相邻的左、右兄弟结点的关键字个数均=m/2向上取整-1,则将关键字删除后与左(或右)兄弟节点双亲结点中的关键字进行合并

但是73这个位置又不够关键字了。。。

把父节点的扒下来

知识回顾

5阶

B树——插入和删除的更多相关文章

  1. AVL树插入和删除

    一.AVL树简介 AVL树是一种平衡的二叉查找树. 平衡二叉树(AVL 树)是一棵空树,或者是具有下列性质的二叉排序树:    1它的左子树和右子树都是平衡二叉树,    2且左子树和右子树高度之差的 ...

  2. HDU 5687 字典树插入查找删除

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5687 2016百度之星资格赛C题,直接套用字典树,顺便巩固了一下自己对字典树的理解 #include< ...

  3. AVL树的插入与删除

    AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1 ...

  4. B+树的插入、删除(附源代码)

    B+ Tree Index B+树的插入 B+树的删除 完整测试代码 Basic B+树和B树类似(有关B树:http://www.cnblogs.com/YuNanlong/p/6354029.ht ...

  5. B树和B+树的插入、删除图文详解

    简介:本文主要介绍了B树和B+树的插入.删除操作.写这篇博客的目的是发现没有相关博客以举例的方式详细介绍B+树的相关操作,由于自身对某些细节也感到很迷惑,通过查阅相关资料,对B+树的操作有所顿悟,写下 ...

  6. B树和B+树的插入、删除图文详解(good)

    B树和B+树的插入.删除图文详解 1. B树 1. B树的定义 B树也称B-树,它是一颗多路平衡查找树.我们描述一颗B树时需要指定它的阶数,阶数表示了一个结点最多有多少个孩子结点,一般用字母m表示阶数 ...

  7. AVL 树的插入、删除、旋转归纳

    参考链接: http://blog.csdn.net/gabriel1026/article/details/6311339   1126号注:先前有一个概念搞混了: 节点的深度 Depth 是指从根 ...

  8. AVL树(查找、插入、删除)——C语言

    AVL树 平衡二叉查找树(Self-balancing binary search tree)又被称为AVL树(AVL树是根据它的发明者G. M. Adelson-Velskii和E. M. Land ...

  9. HDU_2871 线段树+vecor的中间插入和删除使用

    本来这个题目就是个合并区间的题,就跟Hotel一样,要插入一段,则找左孩子 合并后的中间区间 右孩子,但是比较恶心的是,他需要实时得到某一段的起终点,或者某个点在第几个段里面,我想过在线段树里面加入几 ...

随机推荐

  1. RestPack Java实现Html转PDF文件

    最近公司需要将前端一个图表统计导出为pdf.前端导出显示的pdf还是可以的,但是将会导致页面不可用与卡死状态.所以由后端寻找解决方案. 以下为解决方案调研 https://www.cnblogs.co ...

  2. Python_爬虫_urllib解析库

    简介:提取网页保存到txt文件中 + 解析txt文件内容,取出内容 from urllib import request import re.json url="http://www.163 ...

  3. html2image

    测试没有,生产有 也就是写死的显示,配置的不显示

  4. 关于GoldWave为Vegas制作音频交叉淡化特效的教程分享

    在Vegas里对音频交叉淡化的处理,是通过将两段音频交叠.调整交叠部分的音量.选取交叉淡化类型这三步来实现的,许多步骤是在音频轨道拖动音量线来实现的,操作上不够灵敏精细.其实,单就音频的交叉淡化处理, ...

  5. word边框+底纹

    边框(段落和文字):先进行方框.阴影.三维等边框的选择,再进行样式.颜色.宽度设置,应用于:段落和文字:选项:距离正文上下左右距离. 页面边框(页.整篇文章等):先进行方框.阴影.三维等边框的选择,再 ...

  6. 基于gin的golang web开发:永远不要相信用户的输入

    作为后端开发者我们要记住一句话:"永远不要相信用户的输入",这里所说的用户可能是人,也可能是另一个应用程序."永远不要相信用户的输入"是安全编码的准则,也就是说 ...

  7. DIV滚动条设置添加 CSS滚动条显示与滚动条隐藏

    <!DOCTYPE html> <html> <head> <meta charset="gb2312" /> <title& ...

  8. P3287 [SCOI2014]方伯伯的玉米田

    首先可以证明,一定存在一种最优解,每次选择的区间结尾都是 \(n\).因为如果某一个区间结尾不是 \(n\),将其替换成 \(n\) 仍然保持单调不下降.接着都按这个策略拔高玉米. 令 \(f_{i, ...

  9. Non Super Boring Substring 题解(hash+思维)

    题目链接 题目大意 给你一个长度为d(d<=1e5)的字符串,要你求有多少个子串满足这个子串不包含长度大于等于k的回文子串 题目思路 首先可以hash预处理,然后O(1)用前缀hash值和后缀h ...

  10. Java基础教程——String类

    String类 Java程序中的所有字符串字面值(如 "abc" )都是String的实例 字符串是常量(因为 String 对象是不可变的,所以可以共享) 字符串的本质是字符数组 ...