• 原题如下:

    Traveling by Stagecoach
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 4494   Accepted: 1852   Special Judge

    Description

    Once upon a time, there was a traveler.

    He plans to travel using stagecoaches (horse wagons). His starting point and destination are fixed, but he cannot determine his route. Your job in this problem is to write a program which determines the route for him.

    There are several cities in the country, and a road network connecting them. If there is a road between two cities, one can travel by a stagecoach from one of them to the other. A coach ticket is needed for a coach ride. The number of horses is specified in each of the tickets. Of course, with more horses, the coach runs faster.

    At the starting point, the traveler has a number of coach tickets. By considering these tickets and the information on the road network, you should find the best possible route that takes him to the destination in the shortest time. The usage of coach tickets should be taken into account.

    The following conditions are assumed.

    • A coach ride takes the traveler from one city to another directly connected by a road. In other words, on each arrival to a city, he must change the coach.
    • Only one ticket can be used for a coach ride between two cities directly connected by a road.
    • Each ticket can be used only once.
    • The time needed for a coach ride is the distance between two cities divided by the number of horses.
    • The time needed for the coach change should be ignored.

    Input

    The input consists of multiple datasets, each in the following format. The last dataset is followed by a line containing five zeros (separated by a space).

    n m p a b 
    t1 t2 ... tn 
    x1 y1 z1 
    x2 y2 z2 
    ... 
    xp yp zp

    Every input item in a dataset is a non-negative integer. If a line contains two or more input items, they are separated by a space.

    n is the number of coach tickets. You can assume that the number of tickets is between 1 and 8. m is the number of cities in the network. You can assume that the number of cities is between 2 and 30. p is the number of roads between cities, which may be zero.

    a is the city index of the starting city. b is the city index of the destination city. a is not equal to b. You can assume that all city indices in a dataset (including the above two) are between 1 and m.

    The second line of a dataset gives the details of coach tickets. ti is the number of horses specified in the i-th coach ticket (1<=i<=n). You can assume that the number of horses is between 1 and 10.

    The following p lines give the details of roads between cities. The i-th road connects two cities with city indices xi and yi, and has a distance zi (1<=i<=p). You can assume that the distance is between 1 and 100.

    No two roads connect the same pair of cities. A road never connects a city with itself. Each road can be traveled in both directions.

    Output

    For each dataset in the input, one line should be output as specified below. An output line should not contain extra characters such as spaces.

    If the traveler can reach the destination, the time needed for the best route (a route with the shortest time) should be printed. The answer should not have an error greater than 0.001. You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

    If the traveler cannot reach the destination, the string "Impossible" should be printed. One cannot reach the destination either when there are no routes leading to the destination, or when the number of tickets is not sufficient. Note that the first letter of "Impossible" is in uppercase, while the other letters are in lowercase.

    Sample Input

    3 4 3 1 4
    3 1 2
    1 2 10
    2 3 30
    3 4 20
    2 4 4 2 1
    3 1
    2 3 3
    1 3 3
    4 1 2
    4 2 5
    2 4 3 4 1
    5 5
    1 2 10
    2 3 10
    3 4 10
    1 2 0 1 2
    1
    8 5 10 1 5
    2 7 1 8 4 5 6 3
    1 2 5
    2 3 4
    3 4 7
    4 5 3
    1 3 25
    2 4 23
    3 5 22
    1 4 45
    2 5 51
    1 5 99
    0 0 0 0 0

    Sample Output

    30.000
    3.667
    Impossible
    Impossible
    2.856

    Hint

    Since the number of digits after the decimal point is not specified, the above result is not the only solution. For example, the following result is also acceptable.

    30.0

    3.66667

    Impossible

    Impossible

    2.85595
  • 题解:如果把城市看作顶点,道路看作边建图,由于有车票相关的限制,无法直接使用Dijkstra算法求解。不过,这种情况下只需要把状态作为顶点,而把状态的转移看成边建图就可以很好地避免这个问题。考虑"现在在城市v,此时还剩下的车票的集合为S"这样的状态,从这个状态出发,使用一张车票i∈S移动到相邻的城市u,就相当于转移到了"在城市u,此时还剩下的车票的集合为S\{i}"这个状态。把这个转移看成一条边,那么边上的花费是(v-u间道路的长度)/ti。按照上述的方法所构的图就可以用Dijkstra算法求解了。集合S使用状态压缩的方法表示就可以了。由于剩余的车票的集合S随着移动元素个数不断变小,因此这个图实际上一个DAG,计算DAG的最短路不需要是用Dijkstra算法,可以简单地通过DP求解。
  • 代码:
     #include <cstdio>
    #include <cstdio>
    #include <cctype>
    #include <cstring>
    #include <algorithm>
    #define number s-'0' using namespace std; const int INF=0x3f3f3f3f;
    const int MAX_N=;
    const int MAX_M=;
    int n,m,p,a,b;
    int t[MAX_N];
    int d[MAX_M][MAX_M];
    double dp[<<MAX_N][MAX_M]; void read(int &x)
    {
    char s;
    x=;
    bool flag=;
    while(!isdigit(s=getchar()))
    (s=='-')&&(flag=true);
    for(x=number;isdigit(s=getchar());x=x*+number);
    (flag)&&(x=-x);
    } double min(double x, double y)
    {
    if (x<=y) return x;
    return y;
    } int main()
    {
    read(n);read(m);read(p);read(a);read(b);
    while (n+m+p+a+b)
    {
    for (int i=; i<n; i++) read(t[i]);
    memset(d, -, sizeof(d));
    for (int i=; i<p; i++)
    {
    int x, y, z;
    read(x);read(y);read(z);
    x--;y--;
    x[y[d]]=y[x[d]]=z;
    }
    for (int i=; i<<<n; i++)
    {
    fill(dp[i], dp[i]+m, INF);
    }
    dp[(<<n)-][a-]=;
    double res=INF;
    for (int S=(<<n)-; S>=; S--)
    {
    res=min(res, dp[S][b-]);
    for (int v=; v<m; v++)
    {
    for (int i=; i<n; i++)
    {
    if ((S>>i)&)
    {
    for (int u=; u<m; u++)
    {
    if (d[v][u]>=)
    {
    dp[S&~(<<i)][u]=min(dp[S&~(<<i)][u],dp[S][v]+d[v][u]/(double)t[i]);
    }
    }
    }
    }
    }
    }
    if (res==INF) puts("Impossible");
    else printf("%.3f\n", res);
    read(n);read(m);read(p);read(a);read(b);
    }
    }

Traveling by Stagecoach(POJ 2686)的更多相关文章

  1. POJ 2686 Traveling by Stagecoach(状压二维SPFA)

    Traveling by Stagecoach Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3407   Accepted ...

  2. poj2686 Traveling by Stagecoach

                    http://poj.org/problem?id=2686                                                  Trav ...

  3. Traveling by Stagecoach 状态压缩裸题

    Traveling by Stagecoach dp[s][v]  从源点到达  v,状态为s,v的最小值.  for循环枚举就行了. #include <iostream> #inclu ...

  4. poj 2686 Traveling by Stagecoach ---状态压缩DP

    题意:给出一个简单带权无向图和起止点,以及若干张马车车票,每张车票可以雇到相应数量的马. 点 u, v 间有边时,从 u 到 v 或从 v 到 u 必须用且仅用一张车票,花费的时间为 w(u, v) ...

  5. POJ 2686 Traveling by Stagecoach(状压DP)

    [题目链接] http://poj.org/problem?id=2686 [题目大意] 给出一张无向图,你有n张马车票每张车票可以租用ti匹马, 用一张马车票从一个城市到另一个城市所用的时间为这两个 ...

  6. POJ 2686 Traveling by Stagecoach 壮压DP

    大意是有一个人从某个城市要到另一个城市(点数<=30) 然后有n个马车票,相邻的两个城市走的话要消耗掉一个马车票. 花费的时间呢,是马车票上有个速率值,用边/速率就是花的时间. 问最后这个人花费 ...

  7. POJ 2686 Traveling by Stagecoach

    状压DP dp[s][p]用了哪几张票,到哪个节点的最小费用. 注意:G++ %.3lf输出会WA,但C++能过:改成%.3f,C++,G++都能AC #include<cstdio> # ...

  8. POJ 2686 Traveling by Stagecoach (状压DP)

    题意:有一个人从某个城市要到另一个城市, 有n个马车票,相邻的两个城市走的话要消耗掉一个马车票.花费的时间呢,是马车票上有个速率值 ,问最后这个人花费的最短时间是多少. 析:和TSP问题差不多,dp[ ...

  9. POJ2686 Traveling by Stagecoach(状压DP+SPFA)

    题目大概是给一张有向图,有n张票,每张票只能使用一次,使用一张票就能用pi匹马拉着走过图上的一条边,走过去花的时间是边权/pi,问从a点走到b点的最少时间是多少. 用dp[u][S]表示当前在u点且用 ...

随机推荐

  1. Compilation failed (return status=1): g++.exe: error: CreateProcess: No such file or directory错误

    windows10上 theano安装之后出现的问题 >>> import theano You can find the C code in this temporary file ...

  2. Spring Boot自定义错误视图

    Spring Boot缺省错误视图解析器 Web应用在处理请求的过程中发生错误是非常常见的情况,SpringBoot中为我们实现了一个错误视图解析器(DefaultErrorViewResolver) ...

  3. 对‘example_app_new’未定义的引用

    将头文件添加到add-executable()中 cmake_minimum_required(VERSION 3.12) project(SGTK3application2 C) set(CMAKE ...

  4. 2-1关闭和重启linux系统

    0x01 shutdown命令 语法:shutdown [选项][时间][警告信息] 选项 含义 -k 并不执行shutdown,只是发出警告信息 -r 重新启动系统 -h 关闭系统 -c 取消运行s ...

  5. 免费验证码接收网站&不停开小号方法

    手机号注册:免费验证码接收网站 0.http://getfreesmsnumber.com/ 9个外国网站,访问后要快点点击链接,否则2秒会检测出adblocker 1.http://smsrecei ...

  6. Python日期时间(详细)

    获取当前时间戳 import time t = time.time() millis1 = int(t) print('10位时间戳:{}'.format(millis1)) millis2 = in ...

  7. 为什么 java.util.Stack不被官方所推荐使用!

    Java 为什么不推荐使用 Stack 呢? 因为 Stack 是 JDK 1.0 的产物.它继承自 Vector,Vector 都不被推荐使用了,你说 Stack 还会被推荐吗? 当初 JDK1.0 ...

  8. Redis 持久化 rdb、Aof对比

    一.Redis 简介: Redis是一个开源的.基于内存的数据结构存储器,可以用作数据库.缓存和消息中间件. Redis是一个key-value存储系统.和Memcached类似,它支持存储的valu ...

  9. springboot整合websocket后打包报错:javax.websocket.server.ServerContainer not available

    项目整合了websocket以后,打包多次都没有成功,原来是报错了,报错内容如下: Error starting ApplicationContext. To display the conditio ...

  10. 多线程std::cout 深入研究

    1.研究背景 在测试时发现mingw版本的gcc编译出来的程序,一个主程序新建20个线程,每个线程都循环向cout输出信息,几分钟程序就崩了,而用msvc和gcc-linaro版gcc交叉编译器编译出 ...