HDU-3240(卡特兰数+分解质因数后求逆元)
卡特兰数相关公式 :
- \(H_n = {C_{2n}^n \over n+1)}\)
- \(H_n = {(4n-2)\over n+1}\times H_{n-1}\)
- \(H_n = C_{2n}^n - C_{2n}^{n-1}\)
- $ H_n = \begin{cases} \sum_{i=1}^{n} H_{i-1} H_{n-i} & n \geq 2, n \in \mathbf{N_{+}}\ 1 & n = 0, 1 \end{cases} $
因为 \(n\le 100000\) ,所以不考虑第四种,第一种和第三种种求组合数也不可以用递推来求,而用公式的话因为要预先算出阶乘和阶乘的逆元,在此题中m不保证为质数,所以也不好计算。
对于第三种,假设以及算出了\(H_{n-1}\) 那么只需要求出\({4n-2\over n+1}\) 即可
先把 m 分解质因数,然后对于分子 \(4n-2\) ,求出m分解后的质因子的所有指数,然后对于分母\(n+1\) ,也求出m分解的质因子的所有指数,前后两个指数数组相减。剩下分子和分母与m互质的部分直接求即可,保留到递推答案pre中。
综上,当前递推的答案由一个变量pre 和一个指数数组共同记录,所以在地推出当前答案之后进行累加时,还要用pre乘所有质因子
#include <bits/stdc++.h>
using namespace std;
const int N = 1000010;
typedef long long ll;
int n,m;
int cnt[N];
vector<ll> v;
void exgcd(ll a,ll b,ll& d,ll& x,ll& y) {
if(!b) {
d = a; x = 1; y = 0;
}else{
exgcd(b,a%b,d,y,x); y -= x*(a/b);
}
}
ll inv(ll a,ll n){
ll d,x,y;
exgcd(a,n,d,x,y);
return d== 1?(x+n)%n:-1;
}
void getPrime(int x){
for(int i=2;i*i<=x;i++){
if(x % i)continue;
while(x%i==0)x/=i;
v.push_back(i);
}
if(x > 1)v.push_back(x);
return;
}
int main(){
while(cin >> n >> m){
if(n == 0 && m == 0)break;
v.clear();
memset(cnt,0,sizeof cnt);
ll res = 1 % m;
ll pre = 1;
getPrime(m);//对m进行分解质因数
for(int i=2;i<=n;i++){
ll fz = 4 * i - 2, fm = i + 1;
for(int j=0;j<v.size();j++){
if(fz % v[j] == 0)
while(fz % v[j] == 0){
fz /= v[j];
cnt[j] ++;//指数++
}
}
pre = pre * fz % m;//剩余互质部分直接乘
for(int j=0;j<v.size();j++){
if(fm%v[j] == 0)
while(fm % v[j] == 0){
fm /= v[j];
cnt[j] --;//指数--
}
}
if(fm > 1) pre = pre * inv(fm,m) % m;//更新pre
ll tmp = pre;
for(int j=0;j<v.size();j++){
for(int k=1;k<=cnt[j];k++){
tmp = (tmp * v[j]) % m;//计算当前答案
}
}
res = (res + tmp) % m;
}
cout << res << endl;
}
return 0;
}
为什么不是每次直接把质因子直接计算到pre中呢,因为之后的计算中,对分母(n+1)进行分解质因数时,有可能出现不够减的情况,所以我们要一直用一个数组记录这部分和m有公因数的部分
HDU-3240(卡特兰数+分解质因数后求逆元)的更多相关文章
- [bzoj2822][AHOI2012]树屋阶梯 (卡特兰数+分解质因数+高精度)
Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为 ...
- 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...
- HDU 4828 (卡特兰数+逆)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...
- HDU 4828 (卡特兰数+逆元)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...
- hdu 5428 The Factor 分解质因数
The Factor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest ...
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- Train Problem II HDU 1023 卡特兰数
Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- HDU 1023(卡特兰数 数学)
题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n ) = ( ( 4*n-2 ) / ...
随机推荐
- 入门Kubernetes -基础概念
一.Kubernetes概述 Kubernetes ,又称为 k8s(首字母为 k.首字母与尾字母之间有 8 个字符.尾字母为 s,所以简称 k8s)或者简称为 "kube" ,是 ...
- Synchronized 精讲
1.简介 1.1 作用 在并发场景中,保证同一时刻只有一个线程对有并发隐患的代码进行操作 1.2 错误案例 需求:两个线程对 count 变量进行200000次循环增加,预期结果是400000次 pu ...
- PHP 清除缓存文件
/*清除缓存文件*/ public function clearRuntime() { $this->delFileByDir(RUNTIME_PATH); $this->success( ...
- STP、PVST、MST协议
• STP:生成树协议 ○ 阻止环形链路的广播风暴 • PVST:VLAN生成树 ○ 是STP的进阶版不仅能阻止广播风暴,还可以做到基于VLAN进行流量均衡. ...
- 支持向量机(SVM)原理详解
SVM简介 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:SVM还包括核技巧, ...
- python_元组(tuple)
#tuple(),元组不可以修改,不能对其进行增加或删除操作,元组是有序的 #1.定义 tu_1 = () #定义一个空元组 tu_2 = (1,2,'alex',[3,4],(5,6,7),True ...
- 【VNC】vnc远程连接的时候无法显示图像已解决
介绍一个 VNC连接工具:iis7服务器管理工具 IIs7服务器管理工具可以批量连接并管理VNC服务器 作为服务器集成管理器,它最优秀的功能就是批量管理windows与linux系统服务器.vps.能 ...
- ctfshow—web—web5
打开靶机,代码审计 附上代码 <?php error_reporting(0); ?> <html lang="zh-CN"> <head> & ...
- [Usaco2008 Nov]Buying Hay 购买干草
题目描述 约翰的干草库存已经告罄,他打算为奶牛们采购H(1≤H≤50000)磅干草,他知道N(1≤N≤100)个干草公司,现在用1到N给它们编号.第i个公司卖的干草包重量为Pi(1≤Pi≤5000)磅 ...
- LSM(Log Structured Merge Trees ) 笔记
目录 一.大幅度制约存储介质吞吐量的原因 二.传统数据库的实现机制 三.LSM Tree的历史由来 四.提高写吞吐量的思路 4.1 一种方式是数据来后,直接顺序落盘 4.2 另一种方式,是保证落盘的数 ...