1.Celery介绍

1.1 celery应用举例

  • Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理,如果你的业务场景中需要用到异步任务,就可以考虑使用celery

  • 你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情

  • Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用rabbitMQ or Redis

1.2Cleery有以下优点

  • 简单:一旦熟悉了celery的工作流程后,配置和使用还是比较简单的
  • 高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务

  • 快速:一个单进程的celery每分钟可处理上百万个任务

  • 灵活: 几乎celery的各个组件都可以被扩展及自定制

1.3 Celery 特性

  • 方便查看定时任务的执行情况, 如 是否成功, 当前状态, 执行任务花费的时间等.

  • 可选 多进程, Eventlet 和 Gevent 三种模型并发执行.

  • Celery 是语言无关的.它提供了python 等常见语言的接口支持

2.cleery组件

https://www.cnblogs.com/xiaonq/p/11166235.html#i2

2.1celery 扮演生产者和消费者的角色

  • Celery Beat : 任务调度器. Beat 进程会读取配置文件的内容, 周期性的将配置中到期需要执行的任务发送给任务队列.

  • Celery Worker : 执行任务的消费者, 通常会在多台服务器运行多个消费者, 提高运行效率.

  • Broker : 消息代理, 队列本身. 也称为消息中间件. 接受任务生产者发送过来的任务消息, 存进队列再按序分发给任务消费方(通常是消息队列或者数据库).

  • Producer : 任务生产者. 调用 Celery API , 函数或者装饰器, 而产生任务并交给任务队列处理的都是任务生产者.

  • Result Backend : 任务处理完成之后保存状态信息和结果, 以供查询.

2.celery架构图

2.3 产生任务的方式

  • 发布者发布任务(WEB 应用)

  • 任务调度按期发布任务(定时任务)

2.4 celery 依赖三个库: 这三个库, 都由 Celery 的开发者开发和维护.

  • billiard : 基于 Python2.7 的 multisuprocessing 而改进的库, 主要用来提高性能和稳定性.

  • librabbitmp :C 语言实现的 Python 客户端

  • kombu : Celery 自带的用来收发消息的库, 提供了符合 Python 语言习惯的, 使用 AMQP 协议的高级借口.

day6(celery原理与组件)的更多相关文章

  1. celery原理与组件

    1.Celery介绍 https://www.cnblogs.com/xiaonq/p/11166235.html#i1 1.1 celery应用举例 Celery 是一个 基于python开发的 分 ...

  2. celery 原理和组件

    Celery介绍 https://www.cnblogs.com/xiaonq/p/11166235.html#i1 1.1 celery应用举例 Celery 是一个 基于python开发的分布式异 ...

  3. atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7

    atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7 1. 实现原理 1 2. 大的文件上传原理::使用applet 1 3. 新的bp 2 1. 性能提升---分割小文件上传 ...

  4. SSO的定义、原理、组件及应用

    定义: https://baike.baidu.com/item/SSO/3451380 原理: https://blog.csdn.net/cutesource/article/details/58 ...

  5. 小记---------spark架构原理&主要组件和进程

    spark的主要组件和进程       driver (进程):     我们编写的spark程序就在driver上,由driver进程执行       master(进程):     主要负责资源的 ...

  6. Serverless 的运行原理与组件架构

    本文重点探讨下开发者使用 Serverless 时经常遇到的一些问题,以及如何解决 过去一年,我们和大量 Serverless 用户进行了线上和线下的交流,了解大家的业务场景.对 Serverless ...

  7. celery 原理

    https://mp.weixin.qq.com/s/FzvZHQpF5mhV9t_HBzlcwg Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处 ...

  8. celery 原理理解

    这里有一篇写的不错的:http://www.jianshu.com/p/1840035cb510 自己的“格式化”后的内容备忘下: 我们总在说c10k的问题, 也做了不少优化, 然后优化总是不够的. ...

  9. kafka原理与组件

    一.什么是kafkakafka的目标是实现一个为处理实时数据提供一个统一.高吞吐.低延迟的平台.是分布式发布-订阅消息系统,是一个分布式的,可划分的,冗余备份的持久性的日志服务.Kafka使用场景:1 ...

随机推荐

  1. Dapr Java Http 调用

    版本介绍 Java 版本:8 Dapr Java SKD 版本:0.9.2 Dapr Java-SDK HTTP 调用文档 有个先决条件,内容如下: Dapr and Dapr CLI. Java J ...

  2. c++ templates 第二版(英文)

    关注公众号:红宸笑. 回复:电子书 即可

  3. 【SpringBoot】16. 如何监控springboot的健康状况

    如何监控springboot的健康状况 SpringBoot1.5.19.RELEASE 一.使用Actuator检查与监控 actuaotr是spring boot项目中非常强大的一个功能,有助于对 ...

  4. System.Net邮件发送功能踩过的坑

    System.Net邮件发送功能踩过的坑 目录 System.Net邮件发送功能踩过的坑 1.EazyEmail邮件发送类库 2.邮件发送授权码与邮件密码 3.通过邮件密码来发送邮件 4.Wiresh ...

  5. C# OpenFileDialog和SaveFileDialog的常见用法

    #region 示例1 SaveFileDialog sfd = new SaveFileDialog(); //设置文件类型 sfd.Filter = "备份文件(*.bak)|*.bak ...

  6. 设计师建筑师太难了,既要学BIM、无人机,还要学GIS!

    我,一个平平无奇的城市规划专业(建筑专业.路桥专业)大学生,还有一年要毕业,很担心工作以后受到社会的毒打,遂问导师和学长,我要自学点什么技能和软件? 学长A:CAD,SketchUp,PS我都很熟练了 ...

  7. 可变参数以及stdcall

    void event_warnx(const char *fmt, ...) EV_CHECK_FMT(1,2); #define EV_CHECK_FMT(a,b) __attribute__((f ...

  8. LOJ #2005. 「SDOI2017」相关分析 线段树维护回归直线方程

    题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的 ...

  9. 集成学习算法——adaboost

    adaboost是boosting类集成学习方法中的一种算法,全称是adaptive boost,表示其是一种具有自适应性的算法,这个自适应性体现在何处,下面来详细说明. 1.adaboost算法原理 ...

  10. git连接gitlab下载项目代码

    1.安装git 2.鼠标右键git bash here 3.命令行界面输入生成公钥命令 ssh-keygen -t rsa -C'gitlab用户名' 然后一直按enter键下一步生成公钥即可' 4. ...