1.Celery介绍

1.1 celery应用举例

  • Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理,如果你的业务场景中需要用到异步任务,就可以考虑使用celery

  • 你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情

  • Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用rabbitMQ or Redis

1.2Cleery有以下优点

  • 简单:一旦熟悉了celery的工作流程后,配置和使用还是比较简单的
  • 高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务

  • 快速:一个单进程的celery每分钟可处理上百万个任务

  • 灵活: 几乎celery的各个组件都可以被扩展及自定制

1.3 Celery 特性

  • 方便查看定时任务的执行情况, 如 是否成功, 当前状态, 执行任务花费的时间等.

  • 可选 多进程, Eventlet 和 Gevent 三种模型并发执行.

  • Celery 是语言无关的.它提供了python 等常见语言的接口支持

2.cleery组件

https://www.cnblogs.com/xiaonq/p/11166235.html#i2

2.1celery 扮演生产者和消费者的角色

  • Celery Beat : 任务调度器. Beat 进程会读取配置文件的内容, 周期性的将配置中到期需要执行的任务发送给任务队列.

  • Celery Worker : 执行任务的消费者, 通常会在多台服务器运行多个消费者, 提高运行效率.

  • Broker : 消息代理, 队列本身. 也称为消息中间件. 接受任务生产者发送过来的任务消息, 存进队列再按序分发给任务消费方(通常是消息队列或者数据库).

  • Producer : 任务生产者. 调用 Celery API , 函数或者装饰器, 而产生任务并交给任务队列处理的都是任务生产者.

  • Result Backend : 任务处理完成之后保存状态信息和结果, 以供查询.

2.celery架构图

2.3 产生任务的方式

  • 发布者发布任务(WEB 应用)

  • 任务调度按期发布任务(定时任务)

2.4 celery 依赖三个库: 这三个库, 都由 Celery 的开发者开发和维护.

  • billiard : 基于 Python2.7 的 multisuprocessing 而改进的库, 主要用来提高性能和稳定性.

  • librabbitmp :C 语言实现的 Python 客户端

  • kombu : Celery 自带的用来收发消息的库, 提供了符合 Python 语言习惯的, 使用 AMQP 协议的高级借口.

day6(celery原理与组件)的更多相关文章

  1. celery原理与组件

    1.Celery介绍 https://www.cnblogs.com/xiaonq/p/11166235.html#i1 1.1 celery应用举例 Celery 是一个 基于python开发的 分 ...

  2. celery 原理和组件

    Celery介绍 https://www.cnblogs.com/xiaonq/p/11166235.html#i1 1.1 celery应用举例 Celery 是一个 基于python开发的分布式异 ...

  3. atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7

    atitit.文件上传带进度条的实现原理and组件选型and最佳实践总结O7 1. 实现原理 1 2. 大的文件上传原理::使用applet 1 3. 新的bp 2 1. 性能提升---分割小文件上传 ...

  4. SSO的定义、原理、组件及应用

    定义: https://baike.baidu.com/item/SSO/3451380 原理: https://blog.csdn.net/cutesource/article/details/58 ...

  5. 小记---------spark架构原理&主要组件和进程

    spark的主要组件和进程       driver (进程):     我们编写的spark程序就在driver上,由driver进程执行       master(进程):     主要负责资源的 ...

  6. Serverless 的运行原理与组件架构

    本文重点探讨下开发者使用 Serverless 时经常遇到的一些问题,以及如何解决 过去一年,我们和大量 Serverless 用户进行了线上和线下的交流,了解大家的业务场景.对 Serverless ...

  7. celery 原理

    https://mp.weixin.qq.com/s/FzvZHQpF5mhV9t_HBzlcwg Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处 ...

  8. celery 原理理解

    这里有一篇写的不错的:http://www.jianshu.com/p/1840035cb510 自己的“格式化”后的内容备忘下: 我们总在说c10k的问题, 也做了不少优化, 然后优化总是不够的. ...

  9. kafka原理与组件

    一.什么是kafkakafka的目标是实现一个为处理实时数据提供一个统一.高吞吐.低延迟的平台.是分布式发布-订阅消息系统,是一个分布式的,可划分的,冗余备份的持久性的日志服务.Kafka使用场景:1 ...

随机推荐

  1. 1.深入Istio:Sidecar自动注入如何实现的?

    转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的Istio源码是 release 1.5. 这篇文章打算讲一下sidecar, ...

  2. GitHub 上适合新手的开源项目(Python 篇)

    作者:HelloGitHub-卤蛋 随着 Python 语言的流行,越来越多的人加入到了 Python 的大家庭中.为什么这么多人学 Python ?我要喊出那句话了:"人生苦短,我用 Py ...

  3. 带货直播源码开发采用MySQL有什么优越性

    MySQL是世界上最流行的开源关系数据库,带货直播源码使用MySQL,可实现分钟级别的数据库部署和弹性扩展,不仅经济实惠,而且稳定可靠,易于运维.云数据库 MySQL 提供备份恢复.监控.容灾.快速扩 ...

  4. css移动端适配 1px边框的解决方案

    .border{ width: 100px; height: 100px; position: relative; } //加上媒体查询更严谨一些 dpr为2的设配才进行缩放,dpr为1的设备边框就是 ...

  5. Java--关于cpu占用解决方案

    关于cpu占用高的解决方案--java篇 通俗一点:找到进程,找到下面的线程,找到线程正在做的事,分析线程正在做的事. 一.查看cpu占用高的进程 top命令可以查看(假设%cpu已经属于很高了,我们 ...

  6. Entity Fremework以及Fluentapi学习

    一.Entity Framework的入门  我这里采用的方式是数据库自己建立  然后模型类自己建立 数据库上下文类自己建立的方式 目的在于弄懂原理 其他的数据库优先等方式这里就不写了  教程有很多. ...

  7. c# ToolStrip控件图片和文字显示--原创

    如上图达到这样的效果 首先我们给属性Image和Text分别赋予需要显示的图片和文字 然后设置DisplyStyle属性为ImageAndText,意为同时显示图片和文字 各种设置ImageAlign ...

  8. Javascript 参数传递

    又一个基本概念出问题,参数传递都是值传递, var a={x:10} function test(obj){obj=1} test(a) console.log(a) 输出什么,如果你说1,那就错了, ...

  9. javascript中什么是函数

    函数的定义 在javascript中函数是一段可以被执行或调用任意次数的JavasScript代码,在数据类型中属于"function".函数也拥有属性和方法,因此函数也是对象. ...

  10. RoekerMQ4.x可视化控制台安装

    1.下载 https://github.com/apache/rocketmq-externals 2.解压文件tar -zxvf rocketmq-externals-master.zip 3.移动 ...