pandas

pandas 是数据处理的利器,非常方便进行表格数据处理,用过的人应该都很清楚,没接触的可以自行查阅pandas 官网

需求介绍

最近在使用 pandas 的过程中碰到一个问题,需要计算数据中某时间字段下一行相对上一行的时间差,之前有用过 dataframe 的 diff 函数,但是官方的教程里只介绍了数值字段的操作,即结果为当前行减去上一行的差值,所以直观的以为时间字段无法进行此项操作。于是我使用了最原始的方式,循环遍历 dataframe 每一行,逐行求时间差,将其存入数组中,最后此数组即为结果。

解决方案

今天,再看代码的时候,想到为什么不尝试一下 diff 对于时间字段到底会得到什么结果呢?于是尝试了一下,并发现了些新东西,本文就将这个过程记录一下。

数据存在 csv 文件中,内容如下:

time
2020-02-01 8:00
2020-02-01 8:10
2020-02-01 8:20
2020-02-01 8:30
2020-02-01 8:40
2020-02-01 9:00
2020-02-01 9:10
2020-02-01 9:40
2020-02-01 10:00
2020-02-02 10:00

读取文件,并进行 diff 操作,代码段如下:

import pandas as pd
df = pd.read_csv('/your/file/path.csv', parse_dates=['time'])
time_diff = df['time'].diff()
print(time_diff)

其中 read_csv 为从硬盘中读取文件,parse_dates=['time'] 表示将 time 字段解析为时间。得到如下结果:

0               NaT
1 0 days 00:10:00
2 0 days 00:10:00
3 0 days 00:10:00
4 0 days 00:10:00
5 0 days 00:20:00
6 0 days 00:10:00
7 0 days 00:30:00
8 0 days 00:20:00
9 1 days 00:00:00
Name: time, dtype: timedelta64[ns]

从中我们可以看出, diff 操作对于时间字段确实有效,并真实的得到了上下行之间的时间差,只是使用 timedelta64[ns] 进行存储,而不是我们通常想到的秒。这样我们的问题就变的简单了,只需要将结果中的 timedelta64[ns] 类型转为秒数就可以了,之前从未接触过 timedelta64[ns] 字段,如何转呢?google 了一下,找到一个非常简单的解决方案,只需要将 timedelta64[ns] 强制转为 timedelta64[s] 即可,如下:

time_diff = time_diff.astype('timedelta64[s]')
print(time_diff)

结果如下:

0        NaN
1 600.0
2 600.0
3 600.0
4 600.0
5 1200.0
6 600.0
7 1800.0
8 1200.0
9 86400.0
Name: time, dtype: float64

可以看到,我们已经得到了以秒数为单位的上下行时间差,达到了想要的效果。

One more thing

我司推出了悟空流程化数据处理平台,访问地址:https://wk.phitrellis.com/,无需复杂的 Excel 公式和编程,即可完成上述计算时间差以及其他常用数据分析操作(包含100+常用操作和如站点数据处理等业务类操作),并可像流程图一样实现链式操作,欢迎尝试并提出宝贵意见!

pandas dataframe 时间字段 diff 函数的更多相关文章

  1. mysql 时间字段的函数 timestamp

    Mysql 里格式 时间字段的函数 DATE_FORMAT unix_timestamp - 墨墨修行的日志 - 网易博客http://jjuanxi.blog.163.com/blog/static ...

  2. SQLITE 时间字段操作函数

    SQLite中的时间日期函数 这是我学习SQLite时做的笔记,参考并翻译了Chris Newman写的<SQLite>中的<Working with Dates and Times ...

  3. Python时间处理,datetime中的strftime/strptime+pandas.DataFrame.pivot_table(像groupby之类 的操作)

    python中datetime模块非常好用,提供了日期格式和字符串格式相互转化的函数strftime/strptime 1.由日期格式转化为字符串格式的函数为: datetime.datetime.s ...

  4. pandas DataFrame apply()函数(1)

    之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...

  5. pandas DataFrame apply()函数(2)

    上一篇pandas DataFrame apply()函数(1)说了如何通过apply函数对DataFrame进行转换,得到一个新的DataFrame. 这篇介绍DataFrame apply()函数 ...

  6. pandas DataFrame.shift()函数

    pandas DataFrame.shift()函数可以把数据移动指定的位数 period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列. eg: 有这样一个DataFrame ...

  7. pandas DataFrame applymap()函数

    pandas DataFrame的 applymap() 函数可以对DataFrame里的每个值进行处理,然后返回一个新的DataFrame: import pandas as pd df = pd. ...

  8. 【跟着stackoverflow学Pandas】add one row in a pandas.DataFrame -DataFrame添加行

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  9. 如何通过Elasticsearch Scroll快速取出数据,构造pandas dataframe — Python多进程实现

    首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用 ...

随机推荐

  1. 刷题[MRCTF2020]Ezpop

    解题思路 打开一看直接是代码审计的题,就嗯审.最近可能都在搞反序列化,先把反序列化的题刷烂,理解理解 代码审计 Welcome to index.php <?php //flag is in f ...

  2. 吴恩达Machine Learning学习笔记(二)--多变量线性回归

    回归任务 多变量线性回归 公式 h为假设,theta为模型参数(代表了特征的权重),x为特征的值 参数更新 梯度下降算法 影响梯度下降算法的因素 (1)加速梯度下降:通过让每一个输入值大致在相同的范围 ...

  3. Spark中的聚类算法

    Spark - Clustering 官方文档:https://spark.apache.org/docs/2.2.0/ml-clustering.html 这部分介绍MLlib中的聚类算法: 目录: ...

  4. Python日志采集(详细)

    通常在前期调试代码的时候,我们会使用print在IDE控制台打印一些信息,判断运行情况.但在运行整个自动化测试项目的过程中,通过print打印信息的方式获取运行情况显然行不通. 这时就需要收集日志,每 ...

  5. 实验三  平面广告制作工具Photoshop基础--制作LOGO

    实验三  平面广告制作工具Photoshop基础--制作LOGO [实验目的] ⑴.熟悉Photoshop的界面 ⑵.能利用photoshop处理简单的图像 [实验条件] ⑴.个人计算机一台 ⑵.个人 ...

  6. C/C++编程日记:用C语言实现的简单Web服务器(Linux),全代码分享!

    相信大家对Apache都有所听闻,Apache是目前使用最为广泛我Web服务器.大家可以从news.netcraft.com/这个网站得到证实. 这是腾讯的uptime.netcraft.com/up ...

  7. 【学习笔记】扩展卢卡斯定理 exLucas

    引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩 ...

  8. js拖拽上传 文件上传之拖拽上传

    由于项目需要上传文件到服务器,于是便在文件上传的基础上增加了拖拽上传.拖拽上传当然属于文件上传的一部分,只不过在文件上传的基础上增加了拖拽的界面,主要在于前台的交互, 从拖拽的文件中获取文件列表然后调 ...

  9. lumen-ioc容器测试 (3)

    lumen-ioc容器测试 (1) lumen-ioc容器测试 (2) lumen-ioc容器测试 (3) lumen-ioc容器测试 (4) lumen-ioc容器测试 (5) lumen-ioc容 ...

  10. centos8平台使用dnf/yum管理软件包

    一,dnf的用途 centos7开始,DNF 成为了默认的软件包管理器,同时 yum 仍然是可用的 DNF包管理器克服了YUM包管理器的一些瓶颈,提升了用户体验,内存占用,依赖分析,运行速度等方面 D ...