2020-3-25 update: 原洛谷日报#2中代码部分出现一些问题,详情见此帖。并略微修改本文一些描述,使得语言更加自然。

2020-4-9 update:修了一些代码的锅,并且将文章同步发表于我的个人博客

同步发表于

洛谷博客

题目传送门

BST就是二叉搜索树,这里讲的是最普通的BST。


BST(Binary Search Tree),二叉搜索树,又叫二叉排序树

是一棵空树或具有以下几种性质的树:

  1. 若左子树不空,则左子树上所有结点的值均小于它的根结点的值

  2. 若右子树不空,则右子树上所有结点的值均大于它的根结点的值

  3. 左、右子树也分别为二叉排序树

  4. 没有权值相等的结点。

看到第4条,我们会有一个疑问,在数据中遇到多个相等的数该怎么办呢,显然我们可以多加一个计数器,就是当前这个值出现了几遍。

那么我们的每一个节点都包含以下几个信息:

  1. 当前节点的权值,也就是序列里的数

  2. 左孩子的下标和右孩子的下标,如果没有则为0

  3. 计数器,代表当前的值出现了几遍

  4. 子树大小和自己的大小的和

至于为什么要有4.我们放到后面讲。

节点是这样的:

struct node{
int val,ls,rs,cnt,siz;
}tree[];

  

其中val是权值,ls/rs是左/右 孩子的下标,cnt是当前的权值出现了几次,siz是子树大小和自己的大小的和


插入:

x是当前节点的下标,v是要插入的值

void add(int x,int v)
{
tree[x].siz++;
//如果查到这个节点,说明这个节点的子树里面肯定是有v的,所以siz++
if(tree[x].val==v){
//如果恰好有重复的数,就把cnt++,退出即可,因为我们要满足第四条性质
tree[x].cnt++;
return ;
}
if(tree[x].val>v){//如果v<tree[x].val,说明v实在x的左子树里
if(tree[x].ls!=)
add(tree[x].ls,v);//如果x有左子树,就去x的左子树
else{//如果不是,v就是x的左子树的权值
cont++;//cont是目前BST一共有几个节点
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].ls=cont;
}
}
else{//右子树同理
if(tree[x].rs!=)
add(tree[x].rs,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].rs=cont;
}
}
}

  


找前驱:

x是当前的节点的下标,val是要找前驱的值,ans是目前找到的比val小的数的最大值

  

int queryfr(int x, int val, int ans) {
if (tree[x].val>=val)
{//如果当前值大于val,就说明查的数大了,所以要往左子树找
if (tree[x].ls==)//如果没有左子树就直接返回找到的ans
return ans;
else//如果不是的话,去查左子树
return queryfr(tree[x].ls,val,ans);
}
else
{//如果当前值小于val,就说明我们找比val小的了
if (tree[x].rs==)//如果没有右孩子,就返回tree[x].val,因为走到这一步时,我们后找到的一定比先找到的大(参考第二条性质)
return (tree[x].val<val) ? tree[x].val : ans
//如果有右孩子,,我们还要找这个节点的右子树,因为万一右子树有比当前节点还大并且小于要找的val的话,ans需要更新
if (tree[x].cnt!=)//如果当前节数的个数不为0,ans就可以更新为tree[x].val
return queryfr(tree[x].rs,val,tree[x].val);
else//反之ans不需要更新
return queryfr(tree[x].rs,val,ans);
}
}

找后继

与找前驱同理,只不过反过来了,在这里我就不多赘述了

int queryne(int x, int val, int ans) {
if (tree[x].val<=val)
{
if (tree[x].rs==)
return ans;
else
return queryne(tree[x].rs,val,ans);
}
else
{
if (tree[x].ls==)
return (tree[x].val>val)? tree[x].val : ans;
if (tree[x].cnt!=)
return queryne(tree[x].ls,val,tree[x].val);
else
return queryne(tree[x].ls,val,ans);
}
}

按值找排名:

这里我们就要用到siz了,排名就是比这个值要小的数的个数再+1,所以我们按值找排名,就可以看做找比这个值小的数的个数,最后加上1即可。

int queryval(int x,int val)
{
if(x==) return ;//没有排名
if(val==tree[x].val) return tree[tree[x].ls].siz+;
//如果当前节点值=val,则我们加上现在比val小的数的个数,也就是它左子树的大小
if(val<tree[x].val) return queryval(tree[x].ls,val);
//如果当前节点值比val大了,我们就去它的左子树找val,因为左子树的节点值一定是小的
return queryval(tree[x].rs,val)+tree[tree[x].ls].siz+tree[x].cnt;
//如果当前节点值比val小了,我们就去它的右子树找val,同时加上左子树的大小和这个节点的值出现次数
//因为这个节点的值小于val,这个节点的左子树的各个节点的值一定也小于val
}

  


按排名找值:

因为性质1和性质2,我们发现排名为n的数在BST上是第n靠左的数。或者说排名为n的数的节点在BST中,它的左子树的siz与它的各个祖先的左子树的siz相加恰好=n (这里相加是要减去重复部分)。

所以问题又转化成上一段 或者说 的后面的部分

rk是要找的排名

int queryrk(int x,int rk)
{
if(x==) return INF;
if(tree[tree[x].ls].siz>=rk)//如果左子树大小>=rk了,就说明答案在左子树里
return queryrk(tree[x].ls,rk);//查左子树
if(tree[tree[x].ls].siz+tree[x].cnt>=rk)//如果左子树大小加上当前的数的多少恰好>=k,说明我们找到答案了
return tree[x].val;//直接返回权值
return queryrk(tree[x].rs,rk-tree[tree[x].ls].siz-tree[x].cnt);
//否则就查右子树,同时减去当前节点的次数与左子树的大小
}

  


同时还要注意一点,此题的排名是要再+1的,样例的正确输出应该是3 3 1 5


然后是完整版代码

Code:

#include<iostream>
#include<cstdio>
using namespace std;
const int INF=0x7fffffff;
int cont;
struct node{
int val,ls,rs,cnt,siz;
}tree[];
int n,opt,xx;
void add(int x,int v)
{
tree[x].siz++;
if(tree[x].val==v){
tree[x].cnt++;
return ;
}
if(tree[x].val>v){
if(tree[x].ls!=)
add(tree[x].ls,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].ls=cont;
}
}
else{
if(tree[x].rs!=)
add(tree[x].rs,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].rs=cont;
}
}
}
int queryfr(int x, int val, int ans) {
if (tree[x].val>=val)
{
if (tree[x].ls==)
return ans;
else
return queryfr(tree[x].ls,val,ans);
}
else
{
if (tree[x].rs==)
return (tree[x].val<val) ? tree[x].val : ans;
if (tree[x].cnt!=)
return queryfr(tree[x].rs,val,tree[x].val);
else
return queryfr(tree[x].rs,val,ans);
}
}
int queryne(int x, int val, int ans) {
if (tree[x].val<=val)
{
if (tree[x].rs==)
return ans;
else
return queryne(tree[x].rs,val,ans);
}
else
{
if (tree[x].ls==)
return (tree[x].val>val)? tree[x].val : ans;
if (tree[x].cnt!=)
return queryne(tree[x].ls,val,tree[x].val);
else
return queryne(tree[x].ls,val,ans);
}
}
int queryrk(int x,int rk)
{
if(x==) return INF;
if(tree[tree[x].ls].siz>=rk)
return queryrk(tree[x].ls,rk);
if(tree[tree[x].ls].siz+tree[x].cnt>=rk)
return tree[x].val;
return queryrk(tree[x].rs,rk-tree[tree[x].ls].siz-tree[x].cnt);
}
int queryval(int x,int val)
{
if(x==) return ;
if(val==tree[x].val) return tree[tree[x].ls].siz+;
if(val<tree[x].val) return queryval(tree[x].ls,val);
return queryval(tree[x].rs,val)+tree[tree[x].ls].siz+tree[x].cnt;
}
inline int read()
{
int r=,w=;
char ch=getchar();
while(ch<''||ch>''){
if(ch=='-') w=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
r=(r<<)+(r<<)+(ch^);
ch=getchar();
}
return r*w;
}
int main()
{
n=read();
while(n--){
opt=read();xx=read();
if(opt==) printf("%d\n",queryval(,xx)+);
else if(opt==) printf("%d\n",queryrk(,xx));
else if(opt==) printf("%d\n",queryfr(,xx,-INF));
else if(opt==) printf("%d\n",queryne(,xx,INF));
else{
if(cont==){
cont++;
tree[cont].cnt=tree[cont].siz=;
tree[cont].val=xx;
}
else add(,xx);
}
}
return ;
}

浅析BST二叉搜索树的更多相关文章

  1. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  2. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  3. bst 二叉搜索树简单实现

    //数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...

  4. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  5. [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    Given a binary search tree with non-negative values, find the minimum absolute difference between va ...

  6. 530 Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    给定一个所有节点为非负值的二叉搜索树,求树中任意两节点的差的绝对值的最小值.示例 :输入:   1    \     3    /   2输出:1解释:最小绝对差为1,其中 2 和 1 的差的绝对值为 ...

  7. LeetCode #938. Range Sum of BST 二叉搜索树的范围和

    https://leetcode-cn.com/problems/range-sum-of-bst/ 二叉树中序遍历 二叉搜索树性质:一个节点大于所有其左子树的节点,小于其所有右子树的节点 /** * ...

  8. Leetcode938. Range Sum of BST二叉搜索树的范围和

    给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和. 二叉搜索树保证具有唯一的值. 示例 1: 输入:root = [10,5,15,3,7,null,18], L = 7 ...

  9. 标准BST二叉搜索树写法

    本人最近被各种数据结构的实验折磨的不要不要的,特别是代码部分,对数据结构有严格的要求,比如写个BST要分成两个类,一个节点类,要给树类,关键是所以操作都要用函数完成,也就是在树类中不能直接操作节点,需 ...

随机推荐

  1. SQL注入笔记-updatexml与extractvalue

    0x1介绍 MySQL 5.1.5版本中添加了对XML文档进行查询和修改的函数 EXTRACTVALUE(XML_document, XPath_string); UPDATEXML(XML_docu ...

  2. springBoot整合redis(作缓存)

    springBoot整合Redis 1,配置Redis配置类 package org.redislearn.configuration; import java.lang.reflect.Method ...

  3. Zookeeper是什么&怎么用

    1.Zookeeper概述 Zookeeper 是一个开源的分布式协调服务框架 ,主要用来解决分布式集群中应用系统的一致性问题和数据管理问题 2:Zookeeper的特点 Zookeeper 本质上是 ...

  4. Python并发编程04 /多线程、生产消费者模型、线程进程对比、线程的方法、线程join、守护线程、线程互斥锁

    Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线程join.守护线程.线程互斥锁 目录 Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线 ...

  5. Python函数06/装饰器

    Python函数06/装饰器 目录 Python函数06/装饰器 内容大纲 1.装饰器 1.1 开放封闭原则 1.2 装饰器 2.今日练习 内容大纲 1.装饰器 1.装饰器 1.1 开放封闭原则 扩展 ...

  6. Java应用服务器之tomcat基础配置(一)

    前文我们聊到了java相关重要组件和它们之间的关系以及jdk.tomcat部署回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13302938.html:今天我们 ...

  7. maven 将jar包添加本地仓库源

    有如下jar包 zxing3.2.1.jar zxingcore.jar QRCode.jar 存在于本机目录 D:\Program Files\eclipse_workspace\webapp\We ...

  8. ASP.Net Core 3.1 With Autofac ConfigureServices returning an System.IServiceProvider isn't supported.

    ASP.Net Core 3.1 With Autofac ConfigureServices returning an System.IServiceProvider isn't supported ...

  9. NVIDIA GPU Turing架构简述

    NVIDIA GPU Turing架构简述 本文摘抄自Turing官方白皮书:https://www.nvidia.com/content/dam/en-zz/Solutions/design-vis ...

  10. less : 解决升级后报错的问题

    vue2项目. 上版本. { "name": "xxx", "version": "1.0.0", "desc ...