「CSP-S 2019」Emiya 家今天的饭
description
solution
看到题目中要求每种主要食材至多在一半的菜中被使用,容易想到补集转换。
即\(ans=\)总方案数-存在某一种食材在一半以上的菜中被使用的方案。
总方案数很容易求:即对于每一种烹饪方法选至多一道菜的方案为\(s_i+1\),其中\(s_i=\sum_{j=1}^{m} a_{i,j}\)。
故总方案数\(=\prod_{i=1}^{n} (s_i+1)-1\),其中-1是因为要去掉一道菜都没有选的方案。
而不合法的方案,我们可以先钦定第\(w\)列中选出了一半以上的数,于是可以用\(f_{i,j,k}\)表示前\(i\)行中已经在第\(w\)列选了\(j\)个数,在其他列选了\(k\)个数的方案。于是有:
\]
于是答案就是所有满足\(j>k\)的\(f_{n,j,k}\)的和,可以$O(mn^3)做。
考虑优化,事实上我们一直只关心\(j-k\)的大小,于是可以将状态改为\(f_{i,j}\)表示前\(i\)行中,第\(w\)列比其他列多选\(j\)个数的方案。于是有:
\]
于是答案就是\(\sum_{i=1}^{n} f_{n,i}\),就可以\(O(mn^2)\)完成,可以通过此题。
为了防止出现负数下标,可以将下标整体加\(n\)
code
#include<cstdio>
#include<cstring>
const int mod=998244353;
const int N=210;
int a[N][2010],s[N],tot=1,bad,n,m,f[N][N];
int add(int x,int y){return (x+y>=mod)?x+y-mod:x+y;}
int dec(int x,int y){return (x-y<0)?x-y+mod:x-y;}
int main(){
freopen("meal.in","r",stdin);
freopen("meal.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j) scanf("%d",&a[i][j]),s[i]=add(s[i],a[i][j]);
tot=1ll*tot*(s[i]+1)%mod;
}
for(int w=1;w<=m;++w){
std::memset(f,0,sizeof(f));
f[0][n]=1;
for(int i=1;i<=n;++i){
for(int j=n-i;j<=n+i;++j){
f[i][j]=f[i-1][j];
f[i][j]=add(f[i][j],1ll*f[i-1][j-1]*a[i][w]%mod);
f[i][j]=add(f[i][j],1ll*f[i-1][j+1]*dec(s[i],a[i][w])%mod);
}
}
for(int i=n+1;i<=n+n;++i)tot=dec(tot,f[n][i]);
}
printf("%d\n",dec(tot,1));
return 0;
}
「CSP-S 2019」Emiya 家今天的饭的更多相关文章
- [CSP-S 2019 Day2]Emiya家今天的饭
思路: 这种题目就考我们首先想到一个性质.这题其实容易想到:超限的菜最多只有一个,再加上这题有容斥那味,就枚举超限的菜然后dp就做完了. 推式子能力还是不行,要看题解. 式子还需要一个优化,就是废除冗 ...
- 洛谷P5664 Emiya 家今天的饭 问题分析
首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...
- 洛谷P5664 Emiya 家今天的饭 题解 动态规划
首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...
- 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】
题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...
- 【CSP-S 2019】D2T1 Emiya 家今天的饭
Description 传送门 Solution 算法1 32pts 爆搜,复杂度\(O((m+1)^n)\) 算法2 84pts 裸的dp,复杂度\(O(n^3m)\) 首先有一个显然的性质要知道: ...
- LOJ#6713. 「EC Final 2019」狄利克雷 k 次根 加强版
题目描述 定义两个函数 \(f, g: \{1, 2, \dots, n\} \rightarrow \mathbb Z\) 的狄利克雷卷积 \(f * g\) 为: \[ (f * g)(n) = ...
- Emiya家今天的饭 NOIP2019 (CSP?) 类DP好题 luoguP5664
luogu题目传送门! 首先,硬求可行方案数并不现实,因为不好求(去年考场就这么挂的,虽然那时候比现在更蒟). 在硬搞可行方案数不行之后,对题目要求的目标进行转换: 可行方案数 = 总方案数 - 不合 ...
- 「LOJ 3153」 「JOI Open 2019」三级跳
题面 LOJ 3153 solution 对于任意一对\(A,B\),若区间\([A,B]\)中存在一个数权值大于\(A\)或\(B\),则用这个数来替代\(A\)或\(B\)显然更优. 故只需要考虑 ...
- CSP-S 2019 Emiya 家今天的饭
64 pts 类似 乌龟棋 的思想,由于 \(64pts\) 的 \(m <= 3\), 非常小. 我们可以设一个 \(dp\),建立 \(m\) 个维度存下每种物品选了几次: \(f[i][A ...
随机推荐
- 论文解读《Deep Resdual Learning for Image Recognition》
总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话 ...
- Numpy入门(简单)
NumPy介绍 最近因为需要使用python做一个数据处理的项目,所以粗略的学习了一下numpy,在此分享一下自己学习中遇到的一些问题和一些基础的名词. 什么是NumPy? python用于科学计算的 ...
- AQS源码深入分析之共享模式-你知道为什么AQS中要有PROPAGATE这个状态吗?
本文基于JDK-8u261源码分析 本篇文章为AQS系列文的第二篇,前文请看:[传送门] 第一篇:AQS源码深入分析之独占模式-ReentrantLock锁特性详解 1 Semaphore概览 共享模 ...
- PHP博客
创建数据库 用户表 blog_user userid int 用户id username varchar(50) 用户名 password varchar(30) 密码 type tinyint(2) ...
- leetcode128-generate-parentheses
题目描述 给出n对括号,请编写一个函数来生成所有的由n对括号组成的合法组合. 例如,给出n=3,解集为: "((()))", "(()())", "( ...
- 嗖嗖移动大厅 源代码 Java初级小项目
今天给大家一个比较综合的项目:嗖嗖移动业务大厅.项目功能很多,概括的功能也很全面.吃透了这个项目,你的java基础部分已经非常棒了!!! 一 . 项目概述 技能要求 使用面向对象设计的思想 合 ...
- C++ 数据结构 1:线性表
1 数据结构 1.1 数据结构中基本概念 数据:程序的操作对象,用于描述客观事物. 数据的特点: 可以输入到计算机 可以被计算机程序处理 数据是一个抽象的概念,将其进行分类后得到程序设计语言中的类型. ...
- 解决git push出现error: failed to push some refs to 错误
错误截图 背景 码云上创建了空项目 本地项目绑定了远程仓库,尝试git push,然后报了错 解决办法 使用强制命令git pull origin master --allow-unrelated-h ...
- Docker学习—Machine
前言 前面<Docker学习-Compose>文中介绍了Compose的使用方式:接下来继续了解docker三剑客之一的 Machine: 一.Docker Machine简介 1.什么是 ...
- Css gray 无法覆盖IE10
网站变灰这个效果很常见,在我这里暂时没有找到最优解决方式, 先把今天的研究结果记录一下. 第一种方案 : 对所有静态资源文件进行灰度处理,得到新一个资源目录,例如asset_ori 原始资源 a ...