蓝桥 log大侠
标题:Log大侠
atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠。
一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力...
变换的规则是: 对其某个子序列的每个整数变为: [log_2 (x) + 1] 其中 [] 表示向下取整,就是对每个数字求以2为底的对数,然后取下整。
例如对序列 3 4 2 操作一次后,这个序列会变成 2 3 2。
drd需要知道,每次这样操作后,序列的和是多少。
【输入格式】
第一行两个正整数 n m 。
第二行 n 个数,表示整数序列,都是正数。
接下来 m 行,每行两个数 L R 表示 atm 这次操作的是区间 [L, R],数列序号从1开始。
【输出格式】
输出 m 行,依次表示 atm 每做完一个操作后,整个序列的和。
这题暴力肯定可以得一部分的,区间大小最差的情况就是每次都给L=1,R=N,这时暴力肯定不行的,会写线段树的话,可以看出这题也就是单点更新以及总区间查询。而它没说数据范围,但就算是1e18的话,取log对于每个位置的数来说,它最多也就更新个60次左右,所以我们可以加个标记,代表这个区间内还有没有位置需要更新,然后再线段树维护,时间复杂度就是60*nlog(n)这样。
#include<cstdio>
#include<cmath>
#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define M(x) ((T[x].l+T[x].r)>>1)
typedef long long ll;
const int N=;
struct Tree{
bool flag;
int l,r;
ll sum;
}T[N<<];
ll a[N];
void built(int id,int l,int r)
{
T[id].l=l;
T[id].r=r;
T[id].sum=;
T[id].flag=false;
if(l==r)
{
T[id].sum=a[l];
T[id].flag=(a[l]>2ll);
return ;
}
built(L(id),l,M(id));
built(R(id),M(id)+,r);
T[id].flag=T[L(id)].flag|T[R(id)].flag;
T[id].sum=T[L(id)].sum+T[R(id)].sum;
}
void modify(int id,int l,int r)
{
if(!T[id].flag)
return ;
if(T[id].l==T[id].r)
{
T[id].sum=(ll)floor(log2(1.0*T[id].sum)+1.0);
T[id].flag=(T[id].sum>2ll);
return ;
}
if(l<=M(id))
modify(L(id),l,r);
if(r>M(id))
modify(R(id),l,r);
T[id].flag=T[L(id)].flag|T[R(id)].flag;
T[id].sum=T[L(id)].sum+T[R(id)].sum;
}
int main()
{
int n,m,l,r;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%lld",&a[i]);
built(,,n);
while(m--)
{
scanf("%d%d",&l,&r);
modify(,l,r);
printf("%lld\n",T[].sum);
}
return ;
}
线段树下线段果
不懂线段树的话,知道stl的map的话,还有种map的写法,思路一样,当某个位置的值<=2时就把它从map删去。
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
map<int,ll> mmp;
map<int,ll>::iterator b,e,temp;
int main()
{
int n,m,l,r;
ll sum=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%lld",&mmp[i]);
sum+=mmp[i];
}
while(m--)
{
scanf("%d%d",&l,&r);
b=mmp.lower_bound(l);
e=mmp.upper_bound(r);
while(b!=e)
{
temp=b;
b++;
sum-=temp->second;
temp->second=(ll)floor(1.0*log2(temp->second)+1.0);
sum+=temp->second;
if(temp->second<=)
mmp.erase(temp);
}
printf("%lld\n",sum);
}
return ;
}
STLwd
蓝桥 log大侠的更多相关文章
- 蓝桥杯Log大侠(线段树单点区间更新)
标题:Log大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: ...
- 2014年第五届蓝桥杯国赛 Log大侠(区间合并+Java递归效率分析)
1678: Log大侠 java 时间限制: 2 Sec 内存限制: 256 MB提交: 20 解决: 1 题目描述 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称L ...
- java实现第五届蓝桥杯LOG大侠
LOG大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力- 变换的规则是: 对其某个 ...
- C语言 · LOG大侠
标题:LOG大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: ...
- 历届试题_log大侠
标题:Log大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... ...
- 2014年第五届蓝桥杯C/C++程序设计本科B组决赛
1.年龄巧合(枚举) 2.出栈次序(推公式/Catalan数) 3.信号匹配(kmp) 4.生物芯片(完全平方数) 5.Log大侠(线段树) 6.殖民地 1.年龄巧合 小明和他的表弟一起去看电影,有人 ...
- 算法笔记_205:第五届蓝桥杯软件类决赛真题(C语言B组)
目录 1 年龄巧合 2 出栈次序 3 信号匹配 4 生物芯片 5 Log大侠 6 殖民地 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 年龄巧合 小明和他的表弟一起去看电影,有人问他们的年龄. ...
- 第五届蓝桥杯C++B组国(决)赛真题
解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.年龄巧合 小明和他的表弟一起去看电影,有人问他们的年龄.小明说:今年是我们的幸运年啊.我出生年份的四位数字加起来刚好是我的年龄.表弟的 ...
- 几道STL题目(FJUT - OJ STL训练1)
这个OJ一直在做,一些专题题目都很好,从易至难,阶梯上升,很适合像我这样的蒟蒻 =7= 这篇是关于其中一个专题训练的题解思路及代码 http://120.78.128.11/Contest.jsp ...
随机推荐
- nasm 使用总结
1,编译 nasm -f bin myfile.asm -o myfile 生成目标文件 nasm -f bin myfile.asm -l myfile 生成清单文件 2,快速开始 nasm是 ...
- Redis学习存档(2)——通过Java使用Redis:Jedis
一.创建项目,引入jedis jar包 可在百度搜索maven repository 进入后搜索jedis,复制依赖包到pom.xml文件中 <project xmlns="http: ...
- 关于STM32的IAP与APP互相跳转
关于STM32的IAP与APP互相跳转 之前做了一个不带系统的IAP与APP互相跳转,在网上找了资料后,很顺畅就完成了,后来在IAR集成开发环境下,IAP无系统,APP用UCOS系统做互相跳转出现了很 ...
- 泛型和DataTable的属性
泛型转DataTable public DataTable ToDataTable<TResult>(this IEnumerable<TResult> value) wher ...
- boost random library的使用
生成满足一定分布的随机数,是统计模拟.系统仿真等应用中最基本的要求.matlab中提供了函数可以生成各种常见分布的随机数,c++使用boost random库也可以很容易实现. 一.例子 boos ...
- 初学java4 编译器优化
编译器自动转义 short/char/byte 在定义变量时,后面赋值小于边界值,即可自动转义 右侧值小于左侧范围,编译器直接强转 右侧值大于左侧范围,编译器报错 short a = 10+1; // ...
- 使用 SQL的 for xml path来进行字符串拼接
本篇主要讲怎么利用SQL的FOR XML PATH 参数来进行字符串拼接,FOR XML PATH的用法很简单,它会以xml文件的形式来返回数据. 我的讲解步骤: 1:构造初始数据 2:提出问题 3: ...
- Ubuntu/centos/redhat/SUSE sipp安装(带rtp支持,3.5.1版本)
1.ubuntu 12.04 apt-get install ncurses-dev apt-get install libpcap-dev ./configure --with-pcap make ...
- VmWare 网络模式
VMware虚拟机三种联网方法及原理 一.Brigde--桥接:默认使用VMnet0 1.原理: Bridge 桥"就是一个主机,这个机器拥有两块网卡,分别处于两个局域网中,同时在" ...
- TypeScript入门三:TypeScript函数类型
TypeScript函数类型 TypeScript函数的参数 TypeScript函数的this与箭头函数 TypeScript函数重载 一.TypeScript函数类型 在上一篇博客中已经对声明Ty ...