【luoguP3959 宝藏】-状压DP
题目描述:
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的m 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
\mathrm{L} \times \mathrm{K}L×K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
链接:
https://www.luogu.org/problem/P3959
思路:
由于n较小,可以考虑状压一下,然后搜索,不状压也可以
void dfs(int now)
{
for(int i=1;i<=n;i++)
if(now & (1<<(i-1)))//如果当前位可以走
{
for(int j=1;j<=n;j++)
{
if(( ( (1<<(j-1))&now) ==0) && dis[i][j]!=inf)//当前位没走过而且有边相连
if(f[ (1<<(j-1)) | now] > f[now]+dis[i][j]*dep[i])判断大小,更新答案。
{
int vis=dep[j];
dep[j]=dep[i]+1;
f[now|(1<<(j-1))]=f[now]+dis[i][j]*dep[i];
dfs(now | (1<<(j-1)));继续往下搜
dep[j]=vis;回溯时改回原值
}
}
}
}
代码:
#include<cstdio>
#include<iostream>
#include<cstdlib>
using namespace std;
const int inf = 2147483647;
const int M = 500050;
int dep[30],f[M],dis[20][20],n,m,ans=inf;
void clean()
{
for(int i=1;i<=n;i++) dep[i]=inf;
for(int i=1;i<=(1<<n)-1;i++) f[i]=inf;
}
void dfs(int now)
{
for(int i=1;i<=n;i++)
if(now & (1<<(i-1)))
{
for(int j=1;j<=n;j++)
{
if(( ( (1<<(j-1))&now) ==0) && dis[i][j]!=inf)
if(f[ (1<<(j-1)) | now] > f[now]+dis[i][j]*dep[i])
{
int vis=dep[j];
dep[j]=dep[i]+1;
f[now|(1<<(j-1))]=f[now]+dis[i][j]*dep[i];
dfs(now | (1<<(j-1)));
dep[j]=vis;
}
}
}
}
int main()
{
for(int i=1;i<=19;i++)
for(int j=1;j<=19;j++)dis[i][j]=inf;
scanf("%d%d",&n,&m);
int x,y,c;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&c);
dis[x][y]=min(c,dis[x][y]);
dis[y][x]=min(c,dis[y][x]);
}
for(int i=1;i<=n;i++)
{
clean();
dep[i]=1;
f[1<<(i-1)]=0;
dfs(1<<(i-1));
ans=min(ans,f[(1<<n)-1]);
}
printf("%d\n",ans);
return 0;
}
【luoguP3959 宝藏】-状压DP的更多相关文章
- [NOIP2017]宝藏 状压DP
[NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...
- P3959 宝藏 状压dp
之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正 ...
- [Luogu P3959] 宝藏 (状压DP+枚举子集)
题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...
- NOIp2017D2T2(luogu3959) 宝藏 (状压dp)
时隔多年终于把这道题锅过了 数据范围显然用搜索剪枝状压dp. 可以记还有哪些点没到(或者已到了哪些点).我们最深已到的是哪些点.这些点的深度是多少,然后一层一层地往下推. 但其实是没必要记最深的那一层 ...
- 计蒜客 宝藏 (状压DP)
链接 : Here! 思路 : 状压DP. 开始想直接爆搜, T掉了, 然后就采用了状压DP的方法来做. 定义$f[S]$为集合$S$的最小代价, $dis[i]$则记录第$i$个点的"深度 ...
- 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$
正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...
- loj2318 「NOIP2017」宝藏[状压DP]
附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...
- Luogu 3959 [NOIP2017] 宝藏- 状压dp
题解 真的想不到这题状压的做法...听说还有跑的飞快的模拟退火,要是现场做绝对滚粗QAQ. 不考虑深度,先预处理出 $pt_{i, S}$ 表示让一个不属于 集合 $S$ 的 点$i$ 与点集 $S$ ...
- LOJ P3959 宝藏 状压dp noip
https://www.luogu.org/problemnew/show/P3959 考场上我怎么想不出来这么写的,状压白学了. 直接按层次存因为如果某个点在前面存过了则肯定结果更优所以不用在意各点 ...
- [胡泽聪 趣题选讲]大包子环绕宝藏-[状压dp]
Description 你有一个长方形的地图,每一个格子要么是一个障碍物,要么是一个有一定价值的宝藏,要么是一个炸弹,或者是一块空地.你的初始位置已经给出.你每次可以走到上.下.左.右这四个相邻的格子 ...
随机推荐
- 考研路茫茫——空调教室HDU2242(Tarjan缩点)
题意:http://acm.hdu.edu.cn/showproblem.php?pid=2242 给你一个图,问你缩完点树上割边的做小绝对值差. 思路: 这题核算起来整整做了我一天(即24个小时)! ...
- php 连接webservice接口
首先谢谢前人, 引用:https://www.cnblogs.com/xbxxf/p/10103430.html 本来说对接接口,我以为是一扮curl接口形式,结果最后给接口锝时候才告诉我是webse ...
- python并发编程之多进程(实践篇)
一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了multiproce ...
- Java String类源码
String类的签名(JDK 8): public final class String implements java.io.Serializable, Comparable<String&g ...
- hdu 1281 匈牙利算法
棋盘游戏 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- linux下mysql数据导入到redis
自Redis 2.6以上版本起,Redis支持快速大批量导入数据,即Pipe传输.通过将要导入的命令转换为Resp格式,然后通过MySQL的concat()来整理出最终导入的命令集合,以达到快速导入的 ...
- Web API 实体对象Get请求参数为null
实体对象前加上 [FromUri] 特性
- Javascript中的继承与复用
实现代码复用的方法包括:工厂模式.构造函数模式.原型模式(<高三>6.2章 P144),它们各自的特点归结如下:1.工厂模式虽然使创建对象一定程度上实现了代码复用,但却没有解决对象识别问题 ...
- luogu P3750 [六省联考2017]分手是祝愿
luogu loj 可以发现在最优策略中,每种操作最多只会做一次,并且操作的先后顺序并不会影响答案,所以考虑从后往前扫,碰到一个\(1\)就对这个位置\(i\)进行操作,这样的操作一定是最优策略.记最 ...
- 【Distributed】大型网站高并发和高可用
一.DNS域名解析 二.大型网站系统应有的特点 三.网站架构演变过程 3.1 传统架构 3.2 分布式架构 3.3 SOA架构 3.4 微服务架构 四.高并发设计原则 4.1 拆分系统 4.2 服务化 ...