只会两个$log$的$qwq$


我们二分答案:设答案为$ans$,则我们把$a[i]<=ans$全部设成$0$,把$a[i]>ans$全部设成$1$,扔到线段树里,这样区间排序(升序)就是求出$[l,r]$中$0$(或$1$)的个数$cnt$,然后对区间$[l,l+cnt-1]$赋值为$0$,对$[l+cnt,r]$赋值为$1$。最后查一下所求位置是$0$还是$1$来决定上下界改变方向。

#include<cstdio>
#include<iostream>
#define R register int
#define ls (tr<<1)
#define rs (tr<<1|1)
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
const int N=;
int tg[N<<],d[N<<],op[N],l[N],r[N];
int a[N],n,m,k;
inline void build(int tr,int l,int r,int vl) { tg[tr]=-;
if(l==r) {d[tr]=(int)a[l]>vl; return;} R md=l+r>>;
build(ls,l,md,vl),build(rs,md+,r,vl); d[tr]=d[ls]+d[rs];
}
inline void spread(int tr,int l,int r) { if(!~tg[tr]) return ; R md=l+r>>;
tg[ls]=tg[rs]=tg[tr]; d[ls]=(md-l+)*tg[tr],d[rs]=(r-md)*tg[tr]; tg[tr]=-;
}
inline void change(int tr,int l,int r,int LL,int RR,int vl) {
if(LL<=l&&r<=RR) {tg[tr]=vl,d[tr]=(r-l+)*vl; return ;} spread(tr,l,r); R md=l+r>>;
if(LL<=md) change(ls,l,md,LL,RR,vl); if(RR>md) change(rs,md+,r,LL,RR,vl); d[tr]=d[ls]+d[rs];
}
inline int query(int tr,int l,int r,int LL,int RR) {
if(LL<=l&&r<=RR) return d[tr]; spread(tr,l,r); R md=l+r>>,ret=;
if(LL<=md) ret+=query(ls,l,md,LL,RR); if(RR>md) ret+=query(rs,md+,r,LL,RR); return ret;
}
inline int ck(int vl) {
build(,,n,vl); for(R i=;i<=m;++i) {
R t=query(,,n,l[i],r[i]); if(!t||t==r[i]-l[i]+) continue;
if(!op[i]) change(,,n,l[i],r[i]-t,),change(,,n,r[i]-t+,r[i],);
else change(,,n,l[i],l[i]+t-,),change(,,n,l[i]+t,r[i],);
} return query(,,n,k,k);
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
n=g(),m=g(); for(R i=;i<=n;++i) a[i]=g();
for(R i=;i<=m;++i) op[i]=g(),l[i]=g(),r[i]=g();
k=g(); R LL=,RR=n; while(LL<RR) {
R md=LL+RR>>; if(ck(md)) LL=md+; else RR=md;
} printf("%d\n",LL);
}

2019.07.03

Luogu P2824 [HEOI2016/TJOI2016]排序 线段树+脑子的更多相关文章

  1. [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)

    题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...

  2. 洛谷$P2824\ [HEOI2016/TJOI2016]$ 排序 线段树+二分

    正解:线段树+二分 解题报告: 传送门$QwQ$ 昂着题好神噢我$jio$得$QwQQQQQ$,,, 开始看到长得很像之前考试题的亚子,,,然后仔细康康发现不一样昂$kk$,就这里范围是$[1,n]$ ...

  3. day 1 晚上 P2824 [HEOI2016/TJOI2016]排序 线段树

    #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #inclu ...

  4. [HEOI2016/TJOI2016]排序 线段树+二分

    [HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...

  5. luogu P2824 [HEOI2016/TJOI2016]排序

    题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行 ...

  6. luoguP2824 [HEOI2016/TJOI2016]排序(线段树分裂做法)

    题意 所谓线段树分裂其实是本题的在线做法. 考虑如果我们有一个已经排好序的区间的权值线段树,那么就可以通过线段树上二分的方法得到第\(k\)个数是谁. 于是用set维护每个升序/降序区间的左右端点以及 ...

  7. BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)

    题目链接 对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树.初始时就是\(n\)棵. 对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并. 对于升 ...

  8. 「Luogu P2824 [HEOI2016/TJOI2016]排序」

    一道十分神奇的线段树题,做法十分的有趣. 前置芝士 线段树:一个十分基础的数据结构,在这道题中起了至关重要的作用. 一种基于01串的神奇的二分思想:在模拟赛中出现了这道题,可以先去做一下,这样可能有助 ...

  9. 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告

    P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...

随机推荐

  1. 什么是弹性公网IP?

    弹性公网IP(Elastic IP Address,简称EIP),是可以独立购买和持有的公网IP地址资源.目前,EIP可绑定到专有网络类型的ECS实例.专有网络类型的私网SLB实例.专有网络类型的辅助 ...

  2. ARC083E. Bichrome Tree

    A viable configuration of the given tree can be divided into two trees, each consists of vertices of ...

  3. 20190805-Python基础 第二章 列表和元组(2)列表

    1. list函数,用于将字符串转换为列表 2. 基本的列表操作 修改列表 - 给元素赋值,使用索引表示法给特定的元素赋值,如x[1] = 2 删除元素 - 使用del语句即可 name1 = ['a ...

  4. 火狐 , IE , 谷歌浏览器的 驱动下载地址汇总

    一.Firefox和驱动下载地址 所有火狐浏览器版本下载地址:http://ftp.mozilla.org/pub/firefox/releases/ 所有火狐驱动geckodriver版本下载地址: ...

  5. VIM纵向编辑【转】

    原文:https://www.ibm.com/developerworks/cn/linux/l-cn-vimcolumn/index.html Vim 的纵向编辑模式启动方便,使用灵活,还可以配合上 ...

  6. 7-MySQL DBA笔记-研发规范

    第7章 研发规范 本章将为读者解读一份研发规范.为了更好地协同工作和确保所开发的应用尽可能的稳定.高效,建立一套数据库相关的研发规范是很有必要的,虽然研发规范的确立和推广是一项很耗时的工作,但所取得的 ...

  7. HTTP协议探究(四):TCP和TLS优化

    一 复习与目标 1 复习 简单密码学.对称加密与非对称加密 数字签名.数字证书 SSL/TLS HTTPS = HTTP + SSL/TLS,SSL/TLS为HTTP提供了保密性.完整性和鉴别性 2 ...

  8. JS 验证字符串是否能转为json格式

    var isJSON=function (str) { if (typeof str == 'string') { try { var obj = JSON.parse(str); if (typeo ...

  9. linux - 卸载python

    2019年10月15日12:05:42 [root@spider1 bin]# rpm -qa|grep python|xargs rpm -ev --allmatches --nodeps ##强制 ...

  10. 配置UOJ数据的正确姿势

    最近瞎搞用开源UOJ搭了个OJ,在题目配置方面搞了挺久,一开始看vfleaking的文档还折腾了SVN,特意写下这篇文章为后来人少走弯路 Step 1 拥有管理权限并设置好题面,支持\(LaTex\) ...