CF1156E Special Segments of Permutation
思路:笛卡尔树?(好像并不一定要建出来,但是可以更好理解)
提交:2次
错因:没有判左右儿子是否为空来回溯导致它T了
题解:
建出笛卡尔树,考虑如何计算答案:
先预处理每一个值出现的位置 \(pos[]\);
对于每一个有左右儿子的点,设他在原序列中的值为 \(mx\),根据笛卡尔树的性质,他比自己的子树中的任何一个元素都大 。这样, 我们遍历他的轻儿子中的元素 \(vl\) ,查询 \(pos[mx-vl]\) 是否在重子树中。
其实可以不建树,直接求出每个点作为最大值能够向左右扩展的区间,枚举小的区间就够了。
复杂度 \(O(nlogn)\) ,原因是类似树剖,每个点最多只会向上跳 \(logn\) 条轻边;而一个点被计算,只有在枚举轻子树的时候;其实类似dsu on tree。
当然,不建树的做法的复杂度虽然解释不同,但本质都是一样的、
代码:
#include<bits/stdc++.h>
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*f;
} const int N=250010;
int n,rt,a[N],pos[N],ans;
struct node {int ls,rs,sz,l,r;} t[N];
#define ls(tr) t[tr].ls
#define rs(tr) t[tr].rs
#define sz(tr) t[tr].sz
#define l(tr) t[tr].l
#define r(tr) t[tr].r
int stk[N],top;
inline void calc(int tr,int rn,int mx) {
for(R i=l(tr);i<=r(tr);++i)
ans+=(pos[mx-a[i]]>=l(rn)&&pos[mx-a[i]]<=r(rn));
}
inline void dfs(int tr) {
sz(tr)=1,l(tr)=r(tr)=tr;
if(ls(tr)) dfs(ls(tr)),l(tr)=l(ls(tr));
if(rs(tr)) dfs(rs(tr)),r(tr)=r(rs(tr));
if(!ls(tr)||!rs(tr)) return ;
sz(tr)=sz(ls(tr))+sz(rs(tr));
if(sz(ls(tr))<sz(rs(tr))) calc(ls(tr),rs(tr),a[tr]);
else calc(rs(tr),ls(tr),a[tr]);
}
inline void main() {
n=g(); for(R i=1;i<=n;++i) a[i]=g(),pos[a[i]]=i;
stk[++top]=0,a[0]=1e9;
for(R i=1;i<=n;++i) { R lst=0;
while(a[stk[top]]<a[i]) lst=stk[top],--top;
ls(i)=lst,rs(stk[top])=i; stk[++top]=i;
} rt=stk[2];
dfs(rt); printf("%d\n",ans);
}
} signed main() {Luitaryi::main(); return 0;}
2019.09.15
61
CF1156E Special Segments of Permutation的更多相关文章
- Special Segments of Permutation - CodeForces - 1156E (笛卡尔树上的启发式合并)
题意 给定一个全排列\(a\). 定义子区间\([l,r]\),当且仅当\(a_l + a_r = Max[l,r]\). 求\(a\)序列中子区间的个数. 题解 笛卡尔树上的启发式合并. \(200 ...
- codeforces 1156E Special Segments of Permutation
题目链接:https://codeforc.es/contest/1156/problem/E 题目大意: 在数组p中可以找到多少个不同的l,r满足. 思路: ST表+并查集. ST表还是需要的,因为 ...
- Codeforces 1156E Special Segments of Permutation(单调栈)
可以用单调栈直接维护出ai所能覆盖到的最大的左右范围是什么,然后我们可以用这个范围暴力的去查询这个区间的是否有满足的点对,一个小坑点,要对左右区间的大小进行判断,只需要去枚举距离i最近的一段区间去枚举 ...
- Codeforces 1156E Special Segments of Permutation(启发式合并)
题意: 给一个n的排列,求满足a[l]+a[r]=max(l,r)的(l,r)对数,max(l,r)指的是l到r之间的最大a[p] n<=2e5 思路: 先用单调栈处理出每个点能扩展的l[i], ...
- Educational Codeforces Round 64 部分题解
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...
- Educational Codeforces Round 64 (Rated for Div. 2)题解
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...
- Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...
- Educational Codeforces Round 64 选做
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...
- Assembly Experiment5
Answer to the experiment(1),(2),(3),(4) Experiment(5): Screenshots&Results: from the command u w ...
随机推荐
- python Django基础操作
Django常用命令 创建Django项目 Django-admin startprotect mysite 创建项目以后,以下生成的文件 最外层的file:mysite/ 根目录只是你的项目的容器 ...
- 20190621-N皇后
N皇后 难度分类 困难 题目描述 n皇后问题研究的是如何将 n个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n ...
- Educational Codeforces Round 65 (Rated for Div. 2)
A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...
- python __enter__ 与 __exit__的作用,以及与 with 语句的关系(转)
https://blog.csdn.net/xc_zhou/article/details/80810111 python __enter__ 与 __exit__的作用,以及与 with 语句的关系
- spring整合quartz框架
spring整合quartz: 网上也有很多教程,好多都是基于配置方式,我们使用当然怎么简单就怎么用,所以这里介绍基于注解方式整合quartz.前提:你需要有一个能运行的web项目. 1.引依赖: & ...
- css中字体常用单位px、em、rem和%的区别及用法总结
一.px.em.rem和%的定义 1.px(像素) px单位的名称为像素,它是一个固定大小的单元,像素的计算是针对(电脑/手机)屏幕的,一个像素(1px)就是(电脑/手机)屏幕上的一个点,即屏幕分辨率 ...
- (错误) Eclipse使用Maven创建Web时错误
转自:http://blog.csdn.net/afgasdg/article/details/12757433 问题描述: 使用Eclipse自带的Maven插件创建Web项目时报错: Could ...
- (四)springmvc之获取servlet原生对象
一.使用DI注入的方式 <a href="<%=request.getContextPath()%>/servletObj_1">DI注入的方式</a ...
- Java Web 深入分析(1)B/S架构概述
B/S结构即浏览器和服务器结构.它是随着Internet技术的兴起,对C/S结构的一种变化或者改进的结构.在这种结构下,用户工作界面是通过WWW浏览器来实现,极少部分事务逻辑在前端(Browser)实 ...
- Android Service的有关总结
来自一位网友的评论 1.使用方式 startService 启动的服务 主要用于启动一个服务执行后台任务,不进行通信.停止服务使用stopService bindService 启动的服务 该方法启动 ...