PEP 442 -- Safe object finalization
https://www.python.org/dev/peps/pep-0442/
PEP 442 -- Safe object finalization
PEP: | 442 |
---|---|
Title: | Safe object finalization |
Author: | Antoine Pitrou <solipsis at pitrou.net> |
BDFL-Delegate: | Benjamin Peterson <benjamin at python.org> |
Status: | Final |
Type: | Standards Track |
Created: | 2013-05-18 |
Python-Version: | 3.4 |
Post-History: | 2013-05-18 |
Resolution: | https://mail.python.org/pipermail/python-dev/2013-June/126746.html |
Contents
Abstract
This PEP proposes to deal with the current limitations of object finalization. The goal is to be able to define and run finalizers for any object, regardless of their position in the object graph.
This PEP doesn't call for any change in Python code. Objects with existing finalizers will benefit automatically.
Definitions
- Reference
- A directional link from an object to another. The target of the reference is kept alive by the reference, as long as the source is itself alive and the reference isn't cleared.
- Weak reference
- A directional link from an object to another, which doesn't keep alive its target. This PEP focusses on non-weak references.
- Reference cycle
- A cyclic subgraph of directional links between objects, which keeps those objects from being collected in a pure reference-counting scheme.
- Cyclic isolate (CI)
- A standalone subgraph of objects in which no object is referenced from the outside, containing one or several reference cycles, and whose objects are still in a usable, non-broken state: they can access each other from their respective finalizers.
- Cyclic garbage collector (GC)
- A device able to detect cyclic isolates and turn them into cyclic trash. Objects in cyclic trash are eventually disposed of by the natural effect of the references being cleared and their reference counts dropping to zero.
- Cyclic trash (CT)
- A former cyclic isolate whose objects have started being cleared by the GC. Objects in cyclic trash are potential zombies; if they are accessed by Python code, the symptoms can vary from weird AttributeErrors to crashes.
- Zombie / broken object
- An object part of cyclic trash. The term stresses that the object is not safe: its outgoing references may have been cleared, or one of the objects it references may be zombie. Therefore, it should not be accessed by arbitrary code (such as finalizers).
- Finalizer
- A function or method called when an object is intended to be disposed of. The finalizer can access the object and release any resource held by the object (for example mutexes or file descriptors). An example is a __del__ method.
- Resurrection
- The process by which a finalizer creates a new reference to an object in a CI. This can happen as a quirky but supported side-effect of __del__ methods.
Impact
While this PEP discusses CPython-specific implementation details, the change in finalization semantics is expected to affect the Python ecosystem as a whole. In particular, this PEP obsoletes the current guideline that "objects with a __del__ method should not be part of a reference cycle".
Benefits
The primary benefits of this PEP regard objects with finalizers, such as objects with a __del__ method and generators with a finally block. Those objects can now be reclaimed when they are part of a reference cycle.
The PEP also paves the way for further benefits:
- The module shutdown procedure may not need to set global variables to None anymore. This could solve a well-known class of irritating issues.
The PEP doesn't change the semantics of:
- Weak references caught in reference cycles.
- C extension types with a custom tp_dealloc function.
Description
Reference-counted disposal
In normal reference-counted disposal, an object's finalizer is called just before the object is deallocated. If the finalizer resurrects the object, deallocation is aborted.
However, if the object was already finalized, then the finalizer isn't called. This prevents us from finalizing zombies (see below).
Disposal of cyclic isolates
Cyclic isolates are first detected by the garbage collector, and then disposed of. The detection phase doesn't change and won't be described here. Disposal of a CI traditionally works in the following order:
- Weakrefs to CI objects are cleared, and their callbacks called. At this point, the objects are still safe to use.
- The CI becomes a CT as the GC systematically breaks all known references inside it (using the tp_clear function).
- Nothing. All CT objects should have been disposed of in step 2 (as a side-effect of clearing references); this collection is finished.
This PEP proposes to turn CI disposal into the following sequence (new steps are in bold):
- Weakrefs to CI objects are cleared, and their callbacks called. At this point, the objects are still safe to use.
- The finalizers of all CI objects are called.
- The CI is traversed again to determine if it is still isolated. If it is determined that at least one object in CI is now reachable from outside the CI, this collection is aborted and the whole CI is resurrected. Otherwise, proceed.
- The CI becomes a CT as the GC systematically breaks all known references inside it (using the tp_clear function).
- Nothing. All CT objects should have been disposed of in step 4 (as a side-effect of clearing references); this collection is finished.
Note
The GC doesn't recalculate the CI after step 2 above, hence the need for step 3 to check that the whole subgraph is still isolated.
C-level changes
Type objects get a new tp_finalize slot to which __del__ methods are mapped (and reciprocally). Generators are modified to use this slot, rather than tp_del. A tp_finalize function is a normal C function which will be called with a valid and alive PyObjectas its only argument. It doesn't need to manipulate the object's reference count, as this will be done by the caller. However, it must ensure that the original exception state is restored before returning to the caller.
For compatibility, tp_del is kept in the type structure. Handling of objects with a non-NULL tp_del is unchanged: when part of a CI, they are not finalized and end up in gc.garbage. However, a non-NULL tp_del is not encountered anymore in the CPython source tree (except for testing purposes).
Two new C API functions are provided to ease calling of tp_finalize, especially from custom deallocators.
On the internal side, a bit is reserved in the GC header for GC-managed objects to signal that they were finalized. This helps avoid finalizing an object twice (and, especially, finalizing a CT object after it was broken by the GC).
Note
Objects which are not GC-enabled can also have a tp_finalize slot. They don't need the additional bit since their tp_finalize function can only be called from the deallocator: it therefore cannot be called twice, except when resurrected.
Discussion
Predictability
Following this scheme, an object's finalizer is always called exactly once, even if it was resurrected afterwards.
For CI objects, the order in which finalizers are called (step 2 above) is undefined.
Safety
It is important to explain why the proposed change is safe. There are two aspects to be discussed:
- Can a finalizer access zombie objects (including the object being finalized)?
- What happens if a finalizer mutates the object graph so as to impact the CI?
Let's discuss the first issue. We will divide possible cases in two categories:
- If the object being finalized is part of the CI: by construction, no objects in CI are zombies yet, since CI finalizers are called before any reference breaking is done. Therefore, the finalizer cannot access zombie objects, which don't exist.
- If the object being finalized is not part of the CI/CT: by definition, objects in the CI/CT don't have any references pointing to them from outside the CI/CT. Therefore, the finalizer cannot reach any zombie object (that is, even if the object being finalized was itself referenced from a zombie object).
Now for the second issue. There are three potential cases:
- The finalizer clears an existing reference to a CI object. The CI object may be disposed of before the GC tries to break it, which is fine (the GC simply has to be aware of this possibility).
- The finalizer creates a new reference to a CI object. This can only happen from a CI object's finalizer (see above why). Therefore, the new reference will be detected by the GC after all CI finalizers are called (step 3 above), and collection will be aborted without any objects being broken.
- The finalizer clears or creates a reference to a non-CI object. By construction, this is not a problem.
Implementation
An implementation is available in branch finalize of the repository at http://hg.python.org/features/finalize/.
Validation
Besides running the normal Python test suite, the implementation adds test cases for various finalization possibilities including reference cycles, object resurrection and legacy tp_del slots.
The implementation has also been checked to not produce any regressions on the following test suites:
- Tulip, which makes an extensive use of generators
- Tornado
- SQLAlchemy
- Django
- zope.interface
References
Notes about reference cycle collection and weak reference callbacks:http://hg.python.org/cpython/file/4e687d53b645/Modules/gc_weakref.txt
Generator memory leak: http://bugs.python.org/issue17468
Allow objects to decide if they can be collected by GC: http://bugs.python.org/issue9141
Module shutdown procedure based on GC http://bugs.python.org/issue812369
Copyright
This document has been placed in the public domain.
Source: https://github.com/python/peps/blob/master/pep-0442.txt
PEP 442 -- Safe object finalization的更多相关文章
- 深入tornado中的协程
tornado使用了单进程(当然也可以多进程) + 协程 + I/O多路复用的机制,解决了C10K中因为过多的线程(进程)的上下文切换 而导致的cpu资源的浪费. tornado中的I/O多路复用前面 ...
- 2.5 – Garbage Collection 自动垃圾回收 Stop-the-world vs. incremental vs. concurrent 垃圾回收策略
2.5 – Garbage Collection 自动垃圾回收 Lua 5.3 Reference Manual http://www.lua.org/manual/5.3/manual.html# ...
- 关于C#你应该知道的2000件事
原文 关于C#你应该知道的2000件事 下面列出了迄今为止你应该了解的关于C#博客的2000件事的所有帖子. 帖子总数= 1,219 大会 #11 -检查IL使用程序Ildasm.exe d #179 ...
- 禁止使用finalize方法
Don´t use Finalizers, mainly because are unpredictable and we don´t know when will be executed, &quo ...
- ExtJs4得知(五岁以下儿童)主要的Ext分类
Ext类是ExtJs最常见的.最基本的类,它是一个全局对象,它封装了全班.辛格尔顿和 Sencha 该方法提供了一种有用的库. 嵌套在该命名空间中一个较低的水平最用户界面组件. 但是提供了很多有用的功 ...
- 再谈.net的堆和栈---.NET Memory Management Basics
.NET Memory Management Basics .NET memory management is designed so that the programmer is freed fro ...
- (转)调用System.gc没有立即执行的解决方法
调用System.gc没有立即执行的解决方法 查看源码 当我们调用System.gc()的时候,其实并不会马上进行垃圾回收,甚至不一定会执行垃圾回收,查看系统源码可以看到 /** * Indicate ...
- Servet
一.Servlet 是单例吗 不是. 1.你可以用多个 URL 映射同一个 Servlet.这样就会出现多个实例. 2.看看 Servlet 定义: 引用 For a servlet not host ...
- .NET本质论 实例
对象和值的比较 CLR的类型系统(其实就是通用类型系统(CTS),它定义了如何在运行库中声明,使用和管理类型,同时也是运行库支持跨语言集成的一个重要组成部分)将对应简单值的类型同对应传统"对 ...
随机推荐
- 异常-Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=hdfs, access=WRITE, inode="/hbase":root:supergroup:drwxr-xr-x
1 详细异常 Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlExce ...
- Needham-Schroeder协议的形式化描述语言
1.对TLS1.3协议形式化描述过程 第一步: Needham-Schroeder 过程的分析 常量和变量的定义: /* * Needham-Schroeder过程的形式化描述 */ // THE ...
- Linux sudo(CVE-2019-14287)漏洞复现过程
简述: 该漏洞编号是CVE-2019-14287. sudo是Linux系统管理指令,允许用户在不需要切换环境的前提下用其他用户的权限运行程序或命令,通常是以root身份运行命令,以减少root用户的 ...
- windows程序意外关闭子订重启脚本
window程序意外关闭自动重启脚本实现 @echo off :1 tasklist|find /i "xxxx"||start yyyy ping/n 11 127.1> ...
- P1080 【NOIP 2012】 国王游戏[贪心+高精度]
题目来源:洛谷 题目描述 恰逢 H国国庆,国王邀请n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王 ...
- JavaScript常用类库推荐
Axios Axios 是一个基于 promise 的 HTTP 库,可以用在浏览器和 node.js 中 [中文说明], [Github], [教程] Lodash 一致性.模块化.高性能的 Jav ...
- Java出现 The server time zone value '�й���ʱ��' is unrecognized 异常
解决办法: 在配置连接数据库的URL后面加上?serverTimezone=UTC ,如下: jdbc:mysql://localhost:3306/test?serverTimezone=UTC
- SpringCloud 学习(5) --- Zuul(一)基本概念、配置
[TOC] Spring Cloud eureka:注册中心 服务端:提供注册 客户端:进行注册 ribbon:负载均衡(集群) Hystrix:熔断器,执行备选方案 Feign:远程调用 Zuul: ...
- 使用jQuery快速高效制作网页交互特效--JavaScript操作BOM对象
JavaScript操作BOM 一.window对象: 二.window对象的属性和方法 1.windows对象的常用属性: 语法:window.属性名="属性值" 2.windo ...
- Laravel Repository Pattern
Laravel Repository Pattern The Repository Pattern can be very helpful to you in order to keep your ...