BPTT
RNN 的 BP —— Back Propagation Through Time.
1 def backward(self, sensitivity_array,
activator):
'''
实现BPTT算法
'''
self.calc_delta(sensitivity_array, activator)
self.calc_gradient()
def calc_delta(self, sensitivity_array, activator):
self.delta_list = [] # 用来保存各个时刻的误差项
for i in range(self.times):
self.delta_list.append(np.zeros(
(self.state_width, 1)))
self.delta_list.append(sensitivity_array)
# 迭代计算每个时刻的误差项
for k in range(self.times - 1, 0, -1):
self.calc_delta_k(k, activator)
def calc_delta_k(self, k, activator):
'''
根据k+1时刻的delta计算k时刻的delta
'''
state = self.state_list[k+1].copy()
element_wise_op(self.state_list[k+1],
activator.backward)
self.delta_list[k] = np.dot(
np.dot(self.delta_list[k+1].T, self.W),
np.diag(state[:,0])).T
def calc_gradient(self):
self.gradient_list = [] # 保存各个时刻的权重梯度
for t in range(self.times + 1):
self.gradient_list.append(np.zeros(
(self.state_width, self.state_width)))
for t in range(self.times, 0, -1):
self.calc_gradient_t(t)
# 实际的梯度是各个时刻梯度之和
self.gradient = reduce(
lambda a, b: a + b, self.gradient_list,
self.gradient_list[0]) # [0]被初始化为0且没有被修改过
def calc_gradient_t(self, t):
'''
计算每个时刻t权重的梯度
'''
gradient = np.dot(self.delta_list[t],
self.state_list[t-1].T)
self.gradient_list[t] = gradient
class RNN2(RNN1):
# 定义 Sigmoid 激活函数
def activate(self, x):
return 1 / (1 + np.exp(-x)) # 定义 Softmax 变换函数
def transform(self, x):
safe_exp = np.exp(x - np.max(x))
return safe_exp / np.sum(safe_exp) def bptt(self, x, y):
x, y, n = np.asarray(x), np.asarray(y), len(y)
# 获得各个输出,同时计算好各个 State
o = self.run(x)
# 照着公式敲即可 ( σ'ω')σ
dis = o - y
dv = dis.T.dot(self._states[:-1])
du = np.zeros_like(self._u)
dw = np.zeros_like(self._w)
for t in range(n-1, -1, -1):
st = self._states[t]
ds = self._v.T.dot(dis[t]) * st * (1 - st)
# 这里额外设定了最多往回看 10 步
for bptt_step in range(t, max(-1, t-10), -1):
du += np.outer(ds, x[bptt_step])
dw += np.outer(ds, self._states[bptt_step-1])
st = self._states[bptt_step-1]
ds = self._w.T.dot(ds) * st * (1 - st)
return du, dv, dw def loss(self, x, y):
o = self.run(x)
return np.sum(
-y * np.log(np.maximum(o, 1e-12)) -
(1 - y) * np.log(np.maximum(1 - o, 1e-12))
)
BPTT的更多相关文章
- BPTT算法推导
随时间反向传播 (BackPropagation Through Time,BPTT) 符号注解: \(K\):词汇表的大小 \(T\):句子的长度 \(H\):隐藏层单元数 \(E_t\):第t个时 ...
- RNN 入门教程 Part 3 – 介绍 BPTT 算法和梯度消失问题
转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradien ...
- Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...
- 机器学习 —— 基础整理(八)循环神经网络的BPTT算法步骤整理;梯度消失与梯度爆炸
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再 ...
- BPTT for multiple layers
单层rnn的bptt: 每一个时间点的误差进行反向传播,然后将delta求和,更新本层weight. 多层时: 1.时间1:T 分层计算activation. 2.时间T:1 利用本时间点的误差,分层 ...
- 循环神经网络-极其详细的推导BPTT
首先明确一下,本文需要对RNN有一定的了解,而且本文只针对标准的网络结构,旨在彻底搞清楚反向传播和BPTT. 反向传播形象描述 什么是反向传播?传播的是什么?传播的是误差,根据误差进行调整. 举个例子 ...
- LSTM简介以及数学推导(FULL BPTT)
http://blog.csdn.net/a635661820/article/details/45390671 前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直 ...
- Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导
1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...
- Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸
Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸 下面的图显示的是RNN的结果以及数据前向流动方向 假设有 \[ \begin{split} h_t & ...
随机推荐
- Elasticsearch全文检索引擎。什么是elasticsearch? 有什么特点? 怎么使用?
什么是ElasticSearch? Elasticsearch是一个基于Lucene的搜索引擎.它提供了具有HTTPWeb界面和无架构JSON文档的分布式,多租户能力的全文搜索引擎.Elasticse ...
- Pulse Secure 任意文件读取(CVE-2019-11510)漏洞
漏洞分析 我们可以通过CVE-2019-11510这个未授权的任意文件读取漏洞把以下文件下载回来. /etc/passwd /etc/hosts /data/runtime/mtmp/system / ...
- 使用nginx部署项目的相关资料
1.简单的利用nginx部署前端项目 2.ubuntu 下 Nginx 的安装和配置 3.nginx配置文件nginx.conf超详细讲解 4.Nginx 安装与部署配置以及Nginx和uWSGI开机 ...
- TP5之事务处理
事务: 执行完A事件然后执行B事件,AB事件都执行完才算完成.可是有时候由于某些因素,A事件执行完,还没来得及执行B事件.怎么办?就需要回到A事件执行前.这种事情多见于电商支付功能. mysql事务要 ...
- C语言Ⅰ博客作业11
这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-3/homework/10130 我在这个课程的 ...
- FTP文件上传下载
使用Apache Commons Net来实现FTP服务器文件的上传 与 下载 maven配置Jar <!-- https://mvnrepository.com/artifact/common ...
- ARST第三周打卡
Algorithm : 做一个 leetcode 的算法题 //二位数组查找 题目描述 //在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺 ...
- Redis客户端相关
1.redis是什么 redis是一个开源的.使用C语言编写的.支持网络交互的.可基于内存也可持久化的Key-Value数据库.redis的官网地址,非常好记,是redis.io.目前,Vmware在 ...
- jdbc插入mysql时间差14个小时的解决方案
在java中new Date()输出的时间是没错的,插入到mysql后少了14个小时,原因是新版jdbc驱动的时区设置问题. 在jdbc连接url最后加上serverTimezone=GMT%2B8即 ...
- BZOJ4887可乐题解--矩阵运算
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4887 分析 话说这道题经常见到类似模型来计数算期望,概率啊,然而我太蒻了都不会做,今天看 ...