RNN 的 BP —— Back Propagation Through Time.

参考:零基础入门深度学习(5) - 循环神经网络知乎

 1   def backward(self, sensitivity_array,
activator):
'''
实现BPTT算法
'''
self.calc_delta(sensitivity_array, activator)
self.calc_gradient()
def calc_delta(self, sensitivity_array, activator):
self.delta_list = [] # 用来保存各个时刻的误差项
for i in range(self.times):
self.delta_list.append(np.zeros(
(self.state_width, 1)))
self.delta_list.append(sensitivity_array)
# 迭代计算每个时刻的误差项
for k in range(self.times - 1, 0, -1):
self.calc_delta_k(k, activator)
def calc_delta_k(self, k, activator):
'''
根据k+1时刻的delta计算k时刻的delta
'''
state = self.state_list[k+1].copy()
element_wise_op(self.state_list[k+1],
activator.backward)
self.delta_list[k] = np.dot(
np.dot(self.delta_list[k+1].T, self.W),
np.diag(state[:,0])).T
def calc_gradient(self):
self.gradient_list = [] # 保存各个时刻的权重梯度
for t in range(self.times + 1):
self.gradient_list.append(np.zeros(
(self.state_width, self.state_width)))
for t in range(self.times, 0, -1):
self.calc_gradient_t(t)
# 实际的梯度是各个时刻梯度之和
self.gradient = reduce(
lambda a, b: a + b, self.gradient_list,
self.gradient_list[0]) # [0]被初始化为0且没有被修改过
def calc_gradient_t(self, t):
'''
计算每个时刻t权重的梯度
'''
gradient = np.dot(self.delta_list[t],
self.state_list[t-1].T)
self.gradient_list[t] = gradient
 class RNN2(RNN1):
# 定义 Sigmoid 激活函数
def activate(self, x):
return 1 / (1 + np.exp(-x)) # 定义 Softmax 变换函数
def transform(self, x):
safe_exp = np.exp(x - np.max(x))
return safe_exp / np.sum(safe_exp) def bptt(self, x, y):
x, y, n = np.asarray(x), np.asarray(y), len(y)
# 获得各个输出,同时计算好各个 State
o = self.run(x)
# 照着公式敲即可 ( σ'ω')σ
dis = o - y
dv = dis.T.dot(self._states[:-1])
du = np.zeros_like(self._u)
dw = np.zeros_like(self._w)
for t in range(n-1, -1, -1):
st = self._states[t]
ds = self._v.T.dot(dis[t]) * st * (1 - st)
# 这里额外设定了最多往回看 10 步
for bptt_step in range(t, max(-1, t-10), -1):
du += np.outer(ds, x[bptt_step])
dw += np.outer(ds, self._states[bptt_step-1])
st = self._states[bptt_step-1]
ds = self._w.T.dot(ds) * st * (1 - st)
return du, dv, dw def loss(self, x, y):
o = self.run(x)
return np.sum(
-y * np.log(np.maximum(o, 1e-12)) -
(1 - y) * np.log(np.maximum(1 - o, 1e-12))
)

BPTT的更多相关文章

  1. BPTT算法推导

    随时间反向传播 (BackPropagation Through Time,BPTT) 符号注解: \(K\):词汇表的大小 \(T\):句子的长度 \(H\):隐藏层单元数 \(E_t\):第t个时 ...

  2. RNN 入门教程 Part 3 – 介绍 BPTT 算法和梯度消失问题

    转载 - Recurrent Neural Networks Tutorial, Part 3 – Backpropagation Through Time and Vanishing Gradien ...

  3. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  4. 机器学习 —— 基础整理(八)循环神经网络的BPTT算法步骤整理;梯度消失与梯度爆炸

    网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再 ...

  5. BPTT for multiple layers

    单层rnn的bptt: 每一个时间点的误差进行反向传播,然后将delta求和,更新本层weight. 多层时: 1.时间1:T 分层计算activation. 2.时间T:1 利用本时间点的误差,分层 ...

  6. 循环神经网络-极其详细的推导BPTT

    首先明确一下,本文需要对RNN有一定的了解,而且本文只针对标准的网络结构,旨在彻底搞清楚反向传播和BPTT. 反向传播形象描述 什么是反向传播?传播的是什么?传播的是误差,根据误差进行调整. 举个例子 ...

  7. LSTM简介以及数学推导(FULL BPTT)

    http://blog.csdn.net/a635661820/article/details/45390671 前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直 ...

  8. Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导

    1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...

  9. Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸

    Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸 下面的图显示的是RNN的结果以及数据前向流动方向 假设有 \[ \begin{split} h_t & ...

随机推荐

  1. kubeadm安装集群系列(kubeadm 1.15.1)

    kubeadm已经进入GA阶段,所以尝试使用kubeadm从零开始安装高可用的Kubernetes集群,并记录下过程和所有坑 本文基于kubeadm 1.15.1 目录 kubeadm安装集群系列-1 ...

  2. 关于mysql的自增测试,innodb和myisam下的不同表现

    关于mysql的自增测试,innodb和myisam下的不同表现 innodb引擎下的自增id测试 1 innodb引擎下,如果显示insert了最大值,那么下次的AUTO_INCREMENT值就是这 ...

  3. python列表的切片与复制

    切片,即处理一个完整列表中部分数据. 语法 变量[起始索引:终止索引:步长] 首先创建一个字符串列表 >>> cars = ['toyota', 'honda', 'mazda', ...

  4. selenium开发-C#/java/Python

    背景:之前由于自己有编写CefSharp.WinForms 窗体版以及 接口化 WCF+CefSharp.WinForms的网站版本,但是由于某些原因,延伸出Selenium学习与研究 总结:sele ...

  5. 【LOJ】#3123. 「CTS2019 | CTSC2019」重复

    LOJ3123 60pts 正难则反,熟练转成总方案数减掉每个片段都大于等于s的字典序的方案 按照一般的套路建出kmp上每个点加一个字符的转移边的图(注意这个图开始字母必须是nxt链中下一个相邻的字符 ...

  6. Vue 实例之事件 操作样式 (文本、事件、属性、表单、条件)指令

    Vue 可以独立完成前后端分离式web项目的JavaScript框架 三大主流框架之一: Angular React Vue 先进的前端设计模式:MVVM 可以完全脱离服务器端,以前端代码复用的方式渲 ...

  7. .Net高级工程师面试题

    ----------高级开发工程师岗位职责: 1.完成平台系统新功能模块开发,维护现有产品,独立地设计.开发.实现和测试关键系统: 2.负责公司项目核心代码的编写: 3.根据产品需求进行业务功能的开发 ...

  8. hype-v上centos7部署高可用kubernetes集群实践

    概述 在上一篇中已经实践了 非高可用的bubernetes集群的实践 普通的k8s集群当work node 故障时是高可用的,但是master node故障时将会发生灾难,因为k8s api serv ...

  9. 进阶Java编程(1)多线程编程

    Java多线程编程 1,进程与线程 在Java语言里面最大的特点是支持多线程的开发(也是为数不多支持多线程的编程语言Golang.Clojure方言.Elixir),所以在整个的Java技术学习里面, ...

  10. EasyUI_前台js_分页

    1.html: <table id="DataTb" title="客户信息" class="easyui-datagrid" sty ...