Pursuit For Artifacts

CodeForces - 652E

Johnny is playing a well-known computer game. The game are in some country, where the player can freely travel, pass quests and gain an experience.

In that country there are n islands and m bridges between them, so you can travel from any island to any other. In the middle of some bridges are lying ancient powerful artifacts. Johnny is not interested in artifacts, but he can get some money by selling some artifact.

At the start Johnny is in the island a and the artifact-dealer is in the island b(possibly they are on the same island). Johnny wants to find some artifact, come to the dealer and sell it. The only difficulty is that bridges are too old and destroying right after passing over them. Johnnie's character can't swim, fly and teleport, so the problem became too difficult.

Note that Johnny can't pass the half of the bridge, collect the artifact and return to the same island.

Determine if Johnny can find some artifact and sell it.

Input

The first line contains two integers n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of islands and bridges in the game.

Each of the next m lines contains the description of the bridge — three integers x**i, y**i, z**i (1 ≤ x**i, y**i ≤ n, x**i ≠ y**i, 0 ≤ z**i ≤ 1), where x**i and y**i are the islands connected by the i-th bridge, z**i equals to one if that bridge contains an artifact and to zero otherwise. There are no more than one bridge between any pair of islands. It is guaranteed that it's possible to travel between any pair of islands.

The last line contains two integers a and b (1 ≤ a, b ≤ n) — the islands where are Johnny and the artifact-dealer respectively.

Output

If Johnny can find some artifact and sell it print the only word "YES" (without quotes). Otherwise print the word "NO" (without quotes).

Examples

Input

6 71 2 02 3 03 1 03 4 14 5 05 6 06 4 01 6

Output

YES

Input

5 41 2 02 3 03 4 02 5 11 4

Output

NO

Input

5 61 2 02 3 03 1 03 4 04 5 15 3 01 2

Output

YES

题意:

给你一个含有n个节点,m个边的无向图。

以及一个起点a,终点b。

问你是否存在一个从a到b的路径,路径中一条边只走一次并且经过了一个边权为1的边。

思路:

Tarjan缩点建树,每一个强连通块中如果有1的边,,那么缩成的点权为1.

然后强连通块的之间的边(即桥)也有边权,

然后跑一遍dfs,只要有一个经过的节点或者边是权为1即为YES。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 1000010;
int From[maxn], Laxt[maxn], To[maxn << 2], Next[maxn << 2], cnt;
bool flag[maxn];
int low[maxn], dfn[maxn], times, q[maxn], head, scc_cnt, scc[maxn];
vector<pii>G[maxn];
int dis[maxn], S, T, ans;
int check[maxn];
void add(int u, int v, int z)
{
Next[++cnt] = Laxt[u]; From[cnt] = u;
flag[cnt] = z;
Laxt[u] = cnt; To[cnt] = v;
}
void tarjan(int u, int fa)
{
dfn[u] = low[u] = ++times;
q[++head] = u;
for (int i = Laxt[u]; i; i = Next[i]) {
if (To[i] == fa) { continue; }
if (!dfn[To[i]]) {
tarjan(To[i], u);
low[u] = min(low[u], low[To[i]]);
} else { low[u] = min(low[u], dfn[To[i]]); }
}
if (low[u] == dfn[u]) {
scc_cnt++;
while (true) {
int x = q[head--];
scc[x] = scc_cnt;
if (x == u) { break; }
}
}
}
void init()
{
memset(Laxt, 0, sizeof(Laxt));
cnt = 0;
}
int n;
int m;
bool dfs(int S, int pre, int T, bool now)
{
now |= check[S];
if (S == T) {
return now;
}
bool res = 0;
for (auto y : G[S]) {
if (y.fi != pre) {
res |= dfs(y.fi, S, T, now | y.se);
if (res) {
return res;
}
}
}
return res;
}
int a, b;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
init();
int N, M, u, v, i, j;
int z;
scanf("%d%d", &N, &M);
for (i = 1; i <= M; i++) {
scanf("%d%d%d", &u, &v, &z);
add(u, v, z); add(v, u, z);
}
tarjan(1, 0);
for (i = 1; i <= N; i++) {
for (j = Laxt[i]; j; j = Next[j]) {
if (scc[i] != scc[To[j]]) {
G[scc[i]].push_back(make_pair(scc[To[j]], flag[j]));
} else {
check[scc[i]] |= flag[j];
}
}
}
int a, b;
scanf("%d %d", &a, &b);
a = scc[a];
b = scc[b];
if (a == b) {
if (check[a]) {
printf("YES\n");
} else {
printf("NO\n");
}
} else {
if (dfs(a, -1, b, 0)) {
printf("YES\n");
} else {
printf("NO\n");
}
}
return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Pursuit For Artifacts CodeForces - 652E (Tarjan+dfs)的更多相关文章

  1. Pursuit For Artifacts CodeForces - 652E

    https://vjudge.net/problem/CodeForces-652E 边双啊,就是点双那个tarjan里面,如果low[v]==dfn[v](等同于low[v]>dfn[u]), ...

  2. 【NOIP模拟题】Graph(tarjan+dfs)

    似乎我搞得太复杂了? 先tarjan缩点然后dfs就行了QAQ. (我不说我被一个sb错调了半个小时....不要以为缩点后dfs就可以肆无忌惮的不加特判判vis了.. bfs的做法:减反图,然后从大到 ...

  3. Cut 'em all! CodeForces - 982C(贪心dfs)

    K - Cut 'em all! CodeForces - 982C 给一棵树 求最多能切几条边使剩下的子树都有偶数个节点 如果n是奇数 那么奇数=偶数+奇数 不管怎么切 都会有奇数 直接打印-1 贪 ...

  4. E. Reachability from the Capital(tarjan+dfs)

    求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...

  5. Kuro and Walking Route CodeForces - 979C (树上DFS)

    Kuro is living in a country called Uberland, consisting of nn towns, numbered from 11to nn, and n−1n ...

  6. 割点(Tarjan算法)【转载】

    本文转自:www.cnblogs.com/collectionne/p/6847240.html 供大家学习 前言:之前翻译过一篇英文的关于割点的文章(英文原文.翻译),但是自己还有一些不明白的地方, ...

  7. 割点(Tarjan算法)

    本文可转载,转载请注明出处:www.cnblogs.com/collectionne/p/6847240.html .本文未完,如果不在博客园(cnblogs)发现此文章,请访问以上链接查看最新文章. ...

  8. Cleaning Robot (bfs+dfs)

    Cleaning Robot (bfs+dfs) Here, we want to solve path planning for a mobile robot cleaning a rectangu ...

  9. 【洛谷2403】[SDOI2010] 所驼门王的宝藏(Tarjan+dfs遍历)

    点此看题面 大致题意: 一个由\(R*C\)间矩形宫室组成的宫殿中的\(N\)间宫室里埋藏着宝藏.由一间宫室到达另一间宫室只能通过传送门,且只有埋有宝藏的宫室才有传送门.传送门分为3种,分别可以到达同 ...

随机推荐

  1. Linux 查看修改SWAP大小

    1  查看swap 空间大小(总计):     # free -m          默认单位为k, -m 单位为M                total       used       fre ...

  2. 转:微服务框架之微软Service Fabric

    常见的微服务架构用到的软件&组件: docker(成熟应用) spring boot % spring cloud(技术趋势) Service Fabric(属于后起之秀 背后是微软云的驱动) ...

  3. 20190521 - macOS 中显示隐藏文件的快捷键

    macOS 中显示隐藏文件,以前总是借助于命令行或第三方软件,其实有一个快捷键: shift + cmmand + .

  4. public static void main(String[] args) 是什么意思?

    public static void main(String[] args),是java程序的入口地址,java虚拟机运行程序的时候首先找的就是main方法. 一.这里要对main函数讲解一下,参数S ...

  5. 模型蒸馏(Distil)及mnist实践

    结论:蒸馏是个好方法. 模型压缩/蒸馏在论文<Model Compression>及<Distilling the Knowledge in a Neural Network> ...

  6. Python学习笔记——递归函数

    1.设置递归层数 #设置recursion函数的层数,默认是100层 import sys sys.setrecursionlimit(10000) 2. 阶乘 #定义一个阶乘函数 def facto ...

  7. SpringCloud学习(一)服务的注册与发现Eureka(Finchley版本)

    创建服务注册中心 在这里,我还是采用Eureka作为服务注册与发现的组件. 首先创建一个空项目 首先创建一个空项目,再创建一个maven项目,首先创建一个主Maven工程,在其pom文件引入依赖,sp ...

  8. prometheus 的promsql的经典例子 安装grafana

    0.好的参考文档 https://www.cnblogs.com/longcnblogs/p/9620733.html 1.多维度数据 2.Prometheus的全局监控指标 只需要定义一个全局的指标 ...

  9. Redis(1.8)Redis与mysql的数据库同步(缓存穿透与缓存雪崩)

    [1]缓存穿透与缓存雪崩 [1.1]缓存和数据库间数据一致性问题 分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的 ...

  10. MFC控件使用大全

    https://blog.csdn.net/daoming1112/article/details/54698113