你猜猜题怎么出出来的?

显然第\(i\)场的答案为

\[\frac{1}{\binom{n_i}{m_i}\binom{n_i}{k_i}}\sum_{x=0}^{k_i}\binom{n_i}{m_i}\binom{m_i}{x}\binom{n_i-m_i}{k_i-x}x^L
=\frac{1}{\binom{n_i}{k_i}}\sum_{x=0}^{k_i}\binom{m_i}{x}\binom{n_i-m_i}{k_i-x}x^L\\
\]

利用斯特林数进行变换

\[\sum_{x=0}^{k_i}\binom{m_i}{x}\binom{n_i-m_i}{k_i-x}x^L
=\sum_{x=0}^{k_i}\binom{m_i}{x}\binom{n_i-m_i}{k_i-x}\sum_{y=0}^{x}y!\binom{x}{y}\left\{\begin{matrix}L\\y\end{matrix}\right\}\\
=\sum_{y=0}^{k_i}y!\left\{\begin{matrix}L\\y\end{matrix}\right\}
\sum_{x=y}^{k_i}\binom{x}{y}\binom{m_i}{x}\binom{n_i-m_i}{k_i-x}\\
=\sum_{y=0}^{k_i}y!\left\{\begin{matrix}L\\y\end{matrix}\right\}
\sum_{x=y}^{k_i}\binom{m_i}{y}\binom{m_i-y}{x-y}\binom{n_i-m_i}{k_i-x}\\
=\sum_{y=0}^{k_i}y!\binom{m_i}{y}\left\{\begin{matrix}L\\y\end{matrix}\right\}
\sum_{x=0}^{k_i-y}\binom{m_i-y}{x}\binom{n_i-m_i}{k_i-y-x}\\
=\sum_{y=0}^{k_i}y!\binom{m_i}{y}\left\{\begin{matrix}L\\y\end{matrix}\right\}
\binom{n_i-y}{k_i-y}
\]

发现\(y\)的实际上界为\(\min(k_i,m_i,L)\)不过\(1e5\),而询问仅\(2e2\),预处理第\(L\)行斯特林数,询问复杂度\(O(L)\)可以接受。

斯特林数的预处理参见

最终答案为

\[\sum_{i=1}^S\frac{k_i!(n_i-k_i)!}{n_i!}\sum_{y=0}^{k_i}y!\frac{m_i!(n_i-y)!}{y!(m_i-y)!(k_i-y)!(n_i-k_i)!}S(L,y)\\
=\sum_{i=1}^S\frac{k_i!m_i!}{n_i!}\sum_{y=0}^{k_i}\frac{(n_i-y)!}{(m_i-y)!(k_i-y)!}S(L,y)
\]

显得十分的和谐。

此题卡常

#include <bits/stdc++.h>
#define IL inline
#define ll long long
using namespace std;
const int N=8e5+10;
const int M=2e7+10;
const int mod=998244353; IL ll gi(){
ll x=0,f=1;
char ch=getchar();
while(!isdigit(ch))f^=ch=='-',ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f?x:-x;
} int lmt,w[N],rev[N];
IL int fpw(int x,int y) {
int c=1;
for(; y; y>>=1,x=(ll)x*x%mod) if(y&1) c=(ll)c*x%mod;
return c;
}
IL void init(int n) {
int l=0; lmt=1;
while(lmt<=n) lmt<<=1, l++;
for(int i=0; i<lmt; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
int tmp=lmt>>1, wlmt=fpw(3,(mod-1)>>l); w[tmp]=1;
for(int i=tmp+1; i<lmt; ++i) w[i]=(ll)w[i-1]*wlmt%mod;
for(int i=tmp-1; i; --i) w[i]=w[i<<1];
lmt=l;
}
IL void DFT(int*a,int len) {
static unsigned ll tmp[N];
int u=lmt-__builtin_ctz(len),T;
for(int i=0; i<len; ++i) tmp[rev[i]>>u]=a[i];
for(int m=1; m<len; m<<=1)
for(int i=0,s=m<<1; i<len; i+=s)
for(int j=0; j<m; ++j)
T=tmp[i+j+m]*w[j+m]%mod,tmp[i+j+m]=tmp[i+j]+mod-T,tmp[i+j]+=T;
for(int i=0; i<len; ++i) a[i]=tmp[i]%mod;
}
IL void IDFT(int*a,int len) {
reverse(a+1,a+len); DFT(a,len);
ll T=mod-(mod-1)/len;
for(int i=0; i<len; ++i) a[i]=T*a[i]%mod;
}
IL int getLen(int n) {return 1<<(32-__builtin_clz(n));} int n,m,s,l,k,fiv[M],fac[M],f[N],g[N];
IL void getFac(int n) {
fac[0]=1;
for(int i=1; i<=n; ++i) fac[i]=(ll)fac[i-1]*i%mod;
fiv[n]=fpw(fac[n],mod-2);
for(int i=n-1; ~i; --i) fiv[i]=(ll)fiv[i+1]*(i+1)%mod;
}
int cnt,pri[N];
bool vis[N];
IL void getSti(int n) {
ll fup=mod-1;
for(int i=0; i<=n; ++i) {
fup=mod-fup;
f[i]=fup*fiv[i]%mod;
}
g[1]=1;
for(int i=2; i<=n; ++i) {
if(!vis[i]) pri[++cnt]=i,g[i]=fpw(i,n);
for(int j=1; j<=cnt&&pri[j]*i<=n; ++j) {
vis[pri[j]*i]=1;
g[pri[j]*i]=(ll)g[pri[j]]*g[i]%mod;
if(i%pri[j]==0) break;
}
}
for(int i=1; i<=n; ++i) g[i]=(ll)g[i]*fiv[i]%mod;
int len=getLen(n<<1);
DFT(f,len); DFT(g,len);
for(int i=0; i<len; ++i) f[i]=(ll)f[i]*g[i]%mod;
IDFT(f,len);
for(int i=n+1; i<len; ++i) f[i]=0;
} int main() {
scanf("%d%d%d%d",&n,&m,&s,&l);
init(l<<1);
getFac(max(n,l));
getSti(l);
while(s--) {
scanf("%d%d%d",&n,&m,&k);
int T=min(min(m,k),l),sum=0;
for(int i=0; i<=T; ++i) sum=(sum+(ll)fac[n-i]*fiv[m-i]%mod*fiv[k-i]%mod*f[i]%mod)%mod;
sum=(ll)sum*fac[k]%mod*fac[m]%mod*fiv[n]%mod;
printf("%d\n",sum);
}
return 0;
}

[LGP2791] 幼儿园篮球题的更多相关文章

  1. 【洛谷2791】幼儿园篮球题(第二类斯特林数,NTT)

    [洛谷2791]幼儿园篮球题(第二类斯特林数,NTT) 题面 洛谷 题解 对于每一组询问,要求的东西本质上就是: \[\sum_{i=0}^{k}{m\choose i}{n-m\choose k-i ...

  2. 洛谷 P2791 幼儿园篮球题

    洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...

  3. 【题解】幼儿园篮球题(范德蒙德卷积+斯特林+NTT)

    [题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i ...

  4. luogu P2791 幼儿园篮球题

    传送门 先看我们要求的是什么,要求的期望就是总权值/总方案,总权值可以枚举进球的个数\(i\),然后就应该是\(\sum_{i=0}^{k} \binom{m}{i}\binom{n-m}{k-i}i ...

  5. 洛谷 P2791 - 幼儿园篮球题(第二类斯特林数)

    题面传送门 首先写出式子: \[ans=\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{n-m}{k-i}·i^L \] 看到后面有个幂,我们看它不爽,因此考虑将其拆开 ...

  6. 【洛谷2791】 幼儿园篮球题 第二类斯特林数+NTT

    求 \(\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}i^L\) \((1\leqslant n,m\leqslant 2\times 10^7,1\leqsla ...

  7. Luogu2791 幼儿园篮球题【斯特林数,数学】

    题目链接:洛谷 我一开始不知道$N,M$有什么用处,懵逼了一会儿,结果才发现是输入数据范围... $$\begin{aligned}\binom{n}{k}Ans&=\sum_{i=0}^k\ ...

  8. loj6626 幼儿园唱歌题

    题目 不难想到把\(S\)的反串\(S^R\)接到\(S\)后面,这样就可以把\(S[l_1,r_1]\)的前缀转化为\(S^R[n-r_1+1,n-l_1+1]\)的后缀 回文树上两节点的lca就是 ...

  9. RE:ゼロから始める文化課生活

    觉得有必要在NOI之前开一篇学习内容记录. 至于为什么要取这个标题呢?也许并没有什么特殊的借口吧. 5.23 在LOJ上搬了三道原题给大家考了考,然后大家都在考试就我一个人在划水. SSerxhs 和 ...

随机推荐

  1. python3 使用flask连接数据库出现“ModuleNotFoundError: No module named 'MySQLdb'”

    本文链接:https://blog.csdn.net/Granery/article/details/89787348 在使用python3连接MySQL的时候出现了 ‘ModuleNotFoundE ...

  2. thinkphp is NULL表达式写法

    thinkphp  中如果这样写 $where['status']=array('EQ','NULL'),打印出来sql是WHERE ( `status` = 'NULL' ):而我想要的是 `sta ...

  3. Android_(控件)使用自定义控件在屏幕中绘制一条虚线

    在Android屏幕中绘制虚线,最通用的是自定义控件DashedLine,再将自定义控件放入xml布局中 运行截图: 程序结构 package com.example.asus.gary_042; i ...

  4. js获取高度和宽度

      CreateTime--2017年7月24日10:15:47Author:Marydon js获取高度和宽度 参考连接:http://www.cnblogs.com/EasonJim/p/6229 ...

  5. koa 基础(十六)koa 中 session 的使用

    1.app.js /** * koa 中 session 的使用 * 1.npm install koa-session --save * 2.const session = require('koa ...

  6. idea出现灰色或者黄色的波浪线如何去除

    1.File--setting--Editor-Inspections-Geneal-Duplicated Code 去除 主要是类中出现太多的重复代码,idea自动提示.

  7. 百度地图js判断点是否在圆形区域内

    /** * Created by LEGION on 2018/10/11. *//** * @fileoverview GeoUtils类提供若干几何算法,用来帮助用户判断点与矩形. * 圆形.多边 ...

  8. [go]beego获取参数/返回参数

    获取前端传来的参数 获取数据并转为对应的类型 - ?id=111&id=122 c.GetInt("id") int,111 - ?id=111&id=122 c. ...

  9. tensorflow文件读取

    1.知识点 """ 注意:在tensorflow当中,运行操作具有依赖性 1.CPU操作计算与IO计算区别: CPU操作: 1.tensorflow是一个正真的多线程,并 ...

  10. Service-stack.redis 使用PooledRedisClientManager 速度慢的原因之一

    现在越来越多的开发者使用service-stack.redis 来进行redis的访问,但是获取redisclient的方式有多种方式,其中有一种从缓冲池获取client的方式很是得到大家的认可. L ...