codeforces396C
On Changing Tree
You are given a rooted tree consisting of n vertices numbered from 1 to n. The root of the tree is a vertex number 1.
Initially all vertices contain number 0. Then come q queries, each query has one of the two types:
- The format of the query: 1 v x k. In response to the query, you need to add to the number at vertex v number x; to the numbers at the descendants of vertex vat distance 1, add x - k; and so on, to the numbers written in the descendants of vertex v at distance i, you need to add x - (i·k). The distance between two vertices is the number of edges in the shortest path between these vertices.
- The format of the query: 2 v. In reply to the query you should print the number written in vertex v modulo 1000000007 (109 + 7).
Process the queries given in the input.
Input
The first line contains integer n (1 ≤ n ≤ 3·105) — the number of vertices in the tree. The second line contains n - 1 integers p2, p3, ... pn (1 ≤ pi < i), where pi is the number of the vertex that is the parent of vertex i in the tree.
The third line contains integer q (1 ≤ q ≤ 3·105) — the number of queries. Next qlines contain the queries, one per line. The first number in the line is type. It represents the type of the query. If type = 1, then next follow space-separated integers v, x, k (1 ≤ v ≤ n; 0 ≤ x < 109 + 7; 0 ≤ k < 109 + 7). If type = 2, then next follows integer v (1 ≤ v ≤ n) — the vertex where you need to find the value of the number.
Output
For each query of the second type print on a single line the number written in the vertex from the query. Print the number modulo 1000000007 (109 + 7).
Examples
3
1 1
3
1 1 2 1
2 1
2 2
2
1
Note
You can read about a rooted tree here: http://en.wikipedia.org/wiki/Tree_(graph_theory).
给出一棵以1为根的树,形式是从节点2开始给出每个节点的父亲节点;
然后是m次操作,操作分为两种,1 v, x, k,表示在以v为根的子树上添加,
添加的法则是看这个节点与v节点的距离为i的话,加上x-i*k;2 v查询节点v的值。
sol:子树操作显然可以搞出dfs序然后修改一段区间,然后修改是一个经典操作,看做是子树每个节点加上x+deg[v]*k,查询y的时候减去dep[y]*k即可
/*
给出一棵以1为根的树,形式是从节点2开始给出每个节点的父亲节点;
然后是m次操作,操作分为两种,1 v, x, k,表示在以v为根的子树上添加,
添加的法则是看这个节点与v节点的距离为i的话,加上x-i*k;2 v查询节点v的值。
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,M=;
const ll Mod=;
int n,Q;
inline void Ad(ll &x,ll y)
{
x+=y; x-=(x>=Mod)?Mod:; x+=(x<)?Mod:;
}
namespace Tree
{
int tot=,Next[M],to[M],head[N];
inline void add(int x,int y)
{
Next[++tot]=head[x];
to[tot]=y;
head[x]=tot;
}
int In[N],Out[N],cnt=,Depth[N];
inline void dfs(int x)
{
int i;
In[x]=++cnt;
for(i=head[x];i;i=Next[i]) Depth[to[i]]=Depth[x]+,dfs(to[i]);
Out[x]=++cnt;
}
struct segment
{
ll S[N<<];
#define lowbit(x) ((x)&(-x))
inline void Ins(int x,int Val)
{
while(x<=cnt)
{
Ad(S[x],Val); x+=lowbit(x);
}
}
inline int Que(int x)
{
ll ans=;
while(x>)
{
Ad(ans,S[x]); x-=lowbit(x);
}
return ans;
}
}SGT[];
inline void Solve()
{
int i;
Depth[]=; dfs();
R(Q);
while(Q--)
{
ll opt,rt,Val,Del;
R(opt); R(rt);
if(opt==)
{
Val=read()%Mod; R(Del);
SGT[].Ins(In[rt],(Val+Del*Depth[rt]%Mod)%Mod);
SGT[].Ins(Out[rt]+,(-)*(Val+Del*Depth[rt]%Mod)%Mod);
SGT[].Ins(In[rt],Del);
SGT[].Ins(Out[rt]+,(-)*Del);
}
else
{
ll tmp,oo;
tmp=SGT[].Que(In[rt]);
oo=SGT[].Que(In[rt]);
Ad(tmp,(-)*oo*Depth[rt]%Mod);
Wl(tmp);
}
}
}
}
#define T Tree
int main()
{
int i;
R(n);
for(i=;i<=n;i++)
{
int x=read(); T::add(x,i);
}
T::Solve();
return ;
}
/*
Input
3
1 1
3
1 1 2 1
2 1
2 2
Output
2
1 Input
10
1 2 3 4 4 3 3 6 7
10
1 6 13 98
1 7 17 66
1 5 32 39
1 1 9 5
1 7 27 11
1 1 24 79
1 5 87 86
2 2
1 5 9 38
2 5
Output
999999956
999999832
*/
codeforces396C的更多相关文章
随机推荐
- git bash push 本地的commit到远程 -- ssh keys设置
1. 检查是否已经创建 ssh keys git bash 下,cd ~/.ssh 如何出现“No such file or directory”,则表示需要创建一个ssh keys. 2. 创建新 ...
- 【Java】接口和抽象类总结
一.接口 1.1 成员变量(其实是常量) 1.2 方法 二.抽象类 2.1 成员变量 2.2 方法 一.接口 1.1 成员变量(其实是常量) 成员变量默认用 public static final修饰 ...
- 基于FTP 的本地Yum服务器配置
服务器端 环境如下 Vmware14CentOS 7.6 192.168.20.81 server 192.168.20.81 client 1.配置yum源 mount /dev/cdrom /me ...
- python与mysql的数据交互
一 Python 中操作 MySQL 步骤 1.1 安装pymysql命令 sudo pip3 install pymysql 安装软件:sudo apt-get install 软件名称 安装模块: ...
- [Jenkins][GitHub]2 持续集成环境初探
预计阅读时间:30分钟 部署环境:Jenkins ver. 2.61 + Centos7 + Java 1.8 参考链接: http://www.jianshu.com/p/22b7860b4e81 ...
- 使用Ponysay,在Linux终端显示彩虹小马
Ponysay类似于Cowsay,可以在终端打印所有小马的像素画.还有个ponythink,这个是小马想,那个是小马说,效果如下: 安装: sudo apt-get install ponysay 使 ...
- nn.Conv2d 参数及输入输出详解
Torch.nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=Tru ...
- Crossover 19(Mac运行Windows应用程序)
怎样才能在Mac上运行Windows应用程序?相信这是很多朋友都在问的问题,今天macdown(mac软件平台)小编为大家带来Crossover 19 Mac版下载,Crossover 19 mac版 ...
- docker 安装elk
https://www.cnblogs.com/fbtop/p/11005469.html
- 2019招商银行M-Geeker线上比赛题解析
目录 1. 最大子序和(变体) 2. 矩阵求乘积最大 3. 逐渐平均--值最大 目前已更新:第一题,第二题,第四题 1. 最大子序和(变体) 题目描述: 首先考虑常规的最大子序和的问题,即不能去掉中间 ...