Educational Codeforces Round 41 (Rated for Div. 2)

E. Tufurama (CDQ分治 求 二维点数)

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

One day Polycarp decided to rewatch his absolute favourite episode of well-known TV series "Tufurama". He was pretty surprised when he got results only for season 7 episode 3 with his search query of "Watch Tufurama season 3 episode 7 online full hd free". This got Polycarp confused — what if he decides to rewatch the entire series someday and won't be able to find the right episodes to watch? Polycarp now wants to count the number of times he will be forced to search for an episode using some different method.

TV series have n seasons (numbered 1 through n), the i-th season has a**i episodes (numbered 1 through a**i). Polycarp thinks that if for some pair of integers x and y (x < y) exist both season x episode y and season y episode x then one of these search queries will include the wrong results. Help Polycarp to calculate the number of such pairs!

Input

The first line contains one integer n (1  ≤ n  ≤  2·105) — the number of seasons.

The second line contains n integers separated by space a1, a2, ..., a**n (1 ≤ a**i ≤ 109) — number of episodes in each season.

Output

Print one integer — the number of pairs x and y (x < y) such that there exist both season x episode y and season y episode x.

Examples

input

Copy

51 2 3 4 5

output

Copy

0

input

Copy

38 12 7

output

Copy

3

input

Copy

33 2 1

output

Copy

2

Note

Possible pairs in the second example:

  1. x = 1, y = 2 (season 1 episode 2 season 2 episode 1);
  2. x = 2, y = 3 (season 2 episode 3 season 3 episode 2);
  3. x = 1, y = 3 (season 1 episode 3 season 3 episode 1).

In the third example:

  1. x = 1, y = 2 (season 1 episode 2 season 2 episode 1);
  2. x = 1, y = 3 (season 1 episode 3 season 3 episode 1).

题意:

有一部电视剧有n季,每一季有ai集。定义二元组(i,j):存在第i季有第j集。求(i,j)与(j,i)同时合法(i<j)的对数。

真实题意就是:求<i,j>对数,使得a[i]≥j,a[j]≥i并且(i<j)

思路

我们对于第i集,我们建立一个二维坐标(i,a[i] )

通过分析我们发现,对于第i集,可以对答案的贡献就是 \([i+1,a[i]]\) 这个区间集中,集数a[j] >= i 的个数。

我们可以转化为 是询问 二维坐标系中 左下角为\((i+1,i)\) 右上角是 \(([i],n+1)\) 的矩阵中包括的点数。

当\(a[i]<=i\) 时,这个第i集对答案一定为0贡献的,

所以记得跳过这种情况。

然后上面就是一个经典的三维偏序问题,我们直接套CDQ分治模板即可。

此题有更简单的树状数组写法,带更。(因为CDQ直接套板子不费脑子)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int op;
int n;
const int maxL = 3000010;
ll tree[maxL];
int lowbit(int x)
{
return -x & x;
}
ll ask(int x)
{
// cout << x << " ";
ll res = 0ll;
while (x) {
res += tree[x];
x -= lowbit(x);
}
// cout << res << endl;
return res;
}
void add(int x, ll val)
{
// cout << x << " " << val << endl;
while (x < maxL) {
tree[x] += val;
x += lowbit(x);
}
} struct node {
int t;
int op;
int x, y;
int k;
int val;
node() {}
node(int tt, int oo, int xx, int yy, int kk, int vv)
{
t = tt;
op = oo;
x = xx;
y = yy;
k = kk;
val = vv;
}
bool operator<= (const node &bb )const
{
if (x != bb.x) {
return x < bb.x;
} else {
return y <= bb.y;
}
}
};
node a[maxn];
node b[maxn];
ll ans[maxn];
int tot;
int anstot; void cdq(int l, int r)
{
if (l == r) {
return ;
}
int mid = (l + r) >> 1;
cdq(l, mid);
cdq(mid + 1, r);
int ql = l;
int qr = mid + 1;
repd(i, l, r) {
if (qr > r || (ql <= mid && a[ql] <= a[qr])) {
if (a[ql].op == 1) {
add(a[ql].y, a[ql].val);
}
b[i] = a[ql++];
} else {
if (a[qr].op == 2) {
ans[a[qr].val] += a[qr].k * ask(a[qr].y);
}
b[i] = a[qr++];
}
}
ql = l;
qr = mid + 1;
repd(i, l, r) {
if (qr > r || (ql <= mid && a[ql] <= a[qr])) {
if (a[ql].op == 1) {
add(a[ql].y, -a[ql].val);
}
ql++;
} else {
qr++;
}
}
repd(i, l, r) {
a[i] = b[i];
}
}
int m;
int c[maxn]; int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
scanf("%d", &n);
int x1, x2, y1, y2;
repd(i, 1, n)
{
scanf("%d", &c[i]);
if (c[i] > n)
c[i] = n;
tot++;
// cout<<i<<" , "<<c[i]<<endl;
a[tot] = node(tot, 1, i, c[i], 0, 1);
}
repd(i,1,n)
{
if(c[i]<=i)
continue;
x1 = i + 1;
y1 = i; x2 = c[i];
y2 = n+1;
// cout << x1 << " " << y1 << " " << x2 << " " << y2 << endl;
tot++;
a[tot] = node(tot, 2, x1 - 1, y1 - 1, 1, ++anstot);
tot++;
a[tot] = node(tot, 2, x1 - 1, y2, -1, anstot);
tot++;
a[tot] = node(tot, 2, x2, y1 - 1, -1, anstot);
tot++;
a[tot] = node(tot, 2, x2, y2, 1, anstot);
}
cdq(1, tot);
ll temp = 0ll;
repd(i, 1, anstot) {
temp += ans[i];
// printf("%lld\n", ans[i]);
}
printf("%lld\n", temp); return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Educational Codeforces Round 41 967 E. Tufurama (CDQ分治 求 二维点数)的更多相关文章

  1. BOI2007 Mokia | cdq分治求二维点数模板

    题目链接:戳我 也没什么,其实主要就是为了存一个求二维坐标上矩形内点的个数的模板.为了之后咕咕咕地复习使用 不过需要注意的一点是,树状数组传x的时候可千万不要传0了!要不然会一直死循环的...qwqw ...

  2. Educational Codeforces Round 41

    Educational Codeforces Round 41  D. Pair Of Lines 考虑先把凸包找出来,如果凸包上的点数大于\(4\)显然不存在解,小于等于\(2\)必然存在解 否则枚 ...

  3. Codeforces 848C Goodbye Souvenir [CDQ分治,二维数点]

    洛谷 Codeforces 这题我写了四种做法-- 思路 不管做法怎样,思路都是一样的. 好吧,其实不一样,有细微的差别. 第一种 考虑位置\(x\)对区间\([l,r]\)有\(\pm x\)的贡献 ...

  4. Codeforces Round #371 (Div. 1) D. Animals and Puzzle 二维倍增

    D. Animals and Puzzle 题目连接: http://codeforces.com/contest/713/problem/D Description Owl Sonya gave a ...

  5. BZOJ2244: [SDOI2011]拦截导弹(CDQ分治,二维LIS,计数)

    Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高 ...

  6. Educational Codeforces Round 41 E. Tufurama (961E)

    [题解] 第一眼看题飞快地想到一种做法,然后假掉了. 这道题其实是主席树的模板题来着.但是也有别的水法. 我们可以发现每个位置的查询区间是[1,min(a[i],i-1)],所以我们可以把查询区间按照 ...

  7. Educational Codeforces Round 41 (Rated for Div. 2)

    这场没打又亏疯了!!! A - Tetris : 类似俄罗斯方块,模拟一下就好啦. #include<bits/stdc++.h> #define fi first #define se ...

  8. Educational Codeforces Round 41 (Rated for Div. 2) ABCDEF

    最近打的比较少...就只有这么点题解了. A. Tetris time limit per test 1 second memory limit per test 256 megabytes inpu ...

  9. Educational Codeforces Round 41 A B C D E

    A. Tetris 题意 俄罗斯方块,问能得多少分. 思路 即求最小值 Code #include <bits/stdc++.h> #define F(i, a, b) for (int ...

随机推荐

  1. Vue + ElementUI的电商管理系统实例01 登录表单

    效果图: 1.首先来根据Element网站实现布局: <template> <div class="login_container"> <div cl ...

  2. Selenium(二十):expected_conditions判断页面元素

    1. 判断元素(expected_conditons) 作为一个刚刚转到python开发的小朋友,在开发前只将前辈们封装的方法看了一遍,学了一边selenium基础.看到封装的方法有什么判断元素是否存 ...

  3. [BJOI2019] 删数 [dp转贪心结论+线段树]

    题面 传送门 思路 dp部分 以下称合法序列为原题面中可以删空的序列 这个是我在模拟考场上的思路 一开始我是觉得,这个首先可以写成一个dp的形式:$dp[i][j]$表示用$j$个数字填满了目标序列的 ...

  4. c# 无法加载DLL:找不到指定的模块(异常来自HRESULT:0X8007007E)

    c# 无法加载DLL“xxxx”:找不到指定的模块(异常来自HRESULT:0X8007007E)的一个解决方法 以前的一个c#项目,今天运行的时候突然发现调用DLL时出现了下面的错误. 心中很诧异, ...

  5. [bzoj3829][Poi2014]FarmCraft_树形dp

    FarmCraft 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=3829 数据范围:略. 题解: 因为每条边只能必须走两次,所以我们的路径一定是 ...

  6. IDEA 的操作与使用

    idea 设置syso File –> Setting –> Editor –> Live Templates debug 调试: F7 在 Debug 模式下,进入下一步,如果当前 ...

  7. laravel框架视图中常用的逻辑结构forlese,foreach,ifelse等

    if 和else @if($name === 1) 这个数字是1 @else 这个数字非1 @endif switch @switch($name) @case(1) 变量name == 1 @bre ...

  8. python学习-57 logging模块

    logging 1.basicConfig方式 import logging # 以下是日志的级别 logging.debug('debug message') logging.info('info ...

  9. python第三天---列表的魔法

    # list 列表 # 中括号括起来,逗号分隔每个元素, # 列表中可以是数字字符串.列表等都可以放进去 list1 = [123, "book", "手动", ...

  10. HCIA SWITCHING&ROUTTING 笔记——第一章 TCP/IP基础知识(1)

    视频地址:https://ilearningx.huawei.com/courses/course-v1:HuaweiX+EBGTC00000336+Self-paced/courseware/abb ...