[NOI2008]假面舞会 (搜索+gcd)
题意
题解
对于每一条边(u,v)(u,v)(u,v),建两条边(u→v,1),(v→u,−1)(u\to v,1),(v\to u,-1)(u→v,1),(v→u,−1)。跑bfsbfsbfs,如果这个点已经来过,就把到当前的距离与已经得到的disdisdis值的差存起来,所有的值取一个gcdgcdgcd就是最大的答案,最小的答案枚举一下≥3\geq3≥3的因数就行了。如果gcd<3gcd<3gcd<3就无解。
这是有环的情况,没有环的情况,最大的答案就是每个连通块的最长链长度加起来。最小答案是333。如果最长链的和<3<3<3就无解。
CODE
#pragma GCC optimize (3)
#include <bits/stdc++.h>
using namespace std;
char cb[1<<15],*cs=cb,*ct=cb;
#define getc() (cs==ct&&(ct=(cs=cb)+fread(cb,1,1<<15,stdin),cs==ct)?0:*cs++)
void read(int &res){
char ch; for(;!isdigit(ch=getchar()););
for(res=ch-'0';isdigit(ch=getchar());res=res*10+ch-'0');
}
typedef long long LL;
const int MAXN = 100005;
const int MAXM = 1000005;
int n, stk[MAXN], indx, m; bool vis[MAXN];
int fir[MAXN], to[MAXM<<1], nxt[MAXM<<1], wt[MAXM<<1], cnt;
inline void link(int u, int v, int w) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt; wt[cnt] = w;
}
int q[MAXN], s, t, dis[MAXN];
vector<int>vec;
int tot;
void bfs(int S) {
s = 0, t = 0; bool flg = 0;
vis[S] = 1; dis[S] = m; q[t++] = S;
int Mn = m, Mx = m;
while(s < t) {
int u = q[s++];
for(int i = fir[u], v; i; i = nxt[i])
if(!vis[v=to[i]]) {
vis[v] = 1;
dis[v] = dis[u] + wt[i];
Mn = min(Mn, dis[v]);
Mx = max(Mx, dis[v]);
q[t++] = v;
}
else {
if(dis[v] != dis[u] + wt[i])
flg = 1, vec.push_back(abs(dis[u]+wt[i]-dis[v]));
}
}
if(!flg) tot += Mx - Mn + 1;
}
int main () {
read(n), read(m);
for(int i = 1, u, v; i <= m; ++i) read(u), read(v), link(u, v, 1), link(v, u, -1);
for(int i = 1; i <= n; ++i) if(!vis[i]) bfs(i);
if(vec.size()) {
int gcd = 0;
for(int i = vec.size()-1; i >= 0; --i)
gcd = __gcd(gcd, vec[i]);
if(gcd <= 2) puts("-1 -1");
else {
int ans = gcd;
for(int i = 3; i <= gcd; ++i)
if(gcd % i == 0) { ans = i; break; }
printf("%d %d\n", gcd, ans);
}
}
else {
if(tot <= 2) puts("-1 -1");
else printf("%d 3\n", tot);
}
}
[NOI2008]假面舞会 (搜索+gcd)的更多相关文章
- 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]
BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1655 Solved: 798[Submit][S ...
- [BZOJ1064][Noi2008]假面舞会
[BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...
- NOI2008假面舞会
1064: [Noi2008]假面舞会 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 883 Solved: 462[Submit][Status] ...
- 【洛谷】1477:[NOI2008]假面舞会【图论】
P1477 [NOI2008]假面舞会 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具 ...
- 【BZOJ1064】[Noi2008]假面舞会 DFS树
[BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...
- 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链
luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...
- 【BZOJ】1064: [Noi2008]假面舞会(判环+gcd+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1064 表示想到某一种情况就不敢写下去了.... 就是找环的gcd...好可怕.. 于是膜拜了题解.. ...
- 【图论 搜索】bzoj1064: [Noi2008]假面舞会
做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...
- 1064: [Noi2008]假面舞会 - BZOJ
Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办 ...
- 洛谷 P1477 [NOI2008]假面舞会
题目链接 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办方 ...
随机推荐
- Python3数据类型之数字
1. Python数字类型的作用 Python数字类型用来存储数值,它是不可变对象,一旦定义之后,其值不可以被修改.如果改变了数字类型的值,就要重新为其分配内存空间. 定义一个数字类型的变量:a = ...
- php中array_replace,array_splice和str_replace三个函数相互比较
php中有一些功能相似或者是名称相似的函数,比如array_replace,array_splice和str_replace这三个函数,从名称来看前两个操作数组的,后一个操作字符串的. array_r ...
- Linux基础-12-yum管理软件包
1. yum的功能 yum是Yellow dog Updater, Modified的缩写,目的就是为了解决RPM的依赖关系的问题,方便使用者进行软件的安装.升级等等工作. 2. 光盘挂载和镜像挂载 ...
- page分页问题,根据页码获取对应页面的数据,接口调用
添加一个log.js文件,进行接口调用. import axios from '@/libs/api.request' const MODULE_URL = '/log'; export const ...
- 序列方差[NTT]
也许更好的阅读体验 \(\mathcal{Description}\) 给你一个长度为\(n\)的数组\(a\) 你会得到 \(q\) 条指令, 分两种: \(1\ l\ r\ w\) 表示把 \(l ...
- GOF学习笔记1:术语
1.abstract class 抽象类定义了一个接口,把部分或全部实现留给了子类,不能实例化. 2.abstract coupling 抽象耦合如果一个类A引用了另一个抽象类B,那么就说A是抽象耦 ...
- js基本用法
1. 在HTML里面加入JavaScript 方法非常简单,就是通过一对<script></script>标签,然后在标签里面书写代码即可 2. 标签位置 按照以前传统的方法, ...
- 编写Postgres扩展之二:类型和运算符
原文:http://big-elephants.com/2015-10/writing-postgres-extensions-part-ii/ 编译:Tacey Wong 在上一篇关于编写Postg ...
- WebSocket 的应用
后面用到了再来做整理 链接地址:https://www.cnblogs.com/zhaof/p/9833614.html
- Java内存模型之分析volatile
前篇博客[死磕Java并发]—–深入分析volatile的实现原理 中已经阐述了volatile的特性了: volatile可见性:对一个volatile的读,总可以看到对这个变量最终的写: vola ...