思路

奇怪的结论题

考虑增量构造,题目要求每行每列都有偶数个1,奇偶性只需要增减1就能够调整了,所以最后一列一行一定能调整前面n-1阶矩阵的值,所以前面可以任选

答案是\(2^{(n-1)(m-1)}\)

当时怎么也考虑不清楚最后一行和最后一列交点的值,但是莽了一发发现对了。。

看了shadowice1984的题解之后才学会了证明

假设每行填的都是一个二进制数,最后一行填的必然是前面的异或和

因为每行的数都有偶数个二进制位,对于异或,有\(bitcount(a\oplus b)=bitcount(a)+bitcount(b)-2\times bitcount(a \& b)\)

所以最后一行必然有偶数个二进制位,必然合法

另外,长度为m的二进制数有偶数个二进制位的恰好有\(2^{m-1}\)个

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = 998244353;
int n,m;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
signed main(){
int T;
scanf("%lld",&T);
while(T--){
scanf("%lld %lld",&n,&m);
printf("%lld\n",pow(2,(n-1)*(m-1)));
}
return 0;
}

P5159 WD与矩阵的更多相关文章

  1. 洛谷P5159 WD与矩阵

    题目背景 WD整日沉浸在矩阵中,无法自拔-- 题目描述 WD特别喜欢矩阵,尤其是\(01\)矩阵. 一天,CX给了WD一个巨大的\(n\)行\(m\)列的\(01\)矩阵,WD发现这个矩阵每行.每列的 ...

  2. 某谷 P5159 WD与矩阵

    题面在这里 崴脚回家后的小休闲2333. 显然每一行的1的个数必须是偶数,这样可以归纳证明前i行异或出来的m位二进制数也有偶数个1,这样最后一行就有且仅有一种放法了. 于是ans = 2^((n-1) ...

  3. 2018年12月30&31日

    小结:昨天由于做的题目比较少,所以就和今天写在一块了,昨天学习了差分约束和树上差分,当然树上差分是用线段树来维护的,今天重点整理了博客\(233\),然后做了几个题. 一. 完成的题目: 洛谷P327 ...

  4. webgl开发第一道坎——矩阵与坐标变换

    一.齐次坐标 在3D世界中表示一个点的方式是:(x, y, z);然而在3D世界中表示一个向量的方式也是:(x, y, z);如果我们只给一个三元组(x, y, z)鬼知道这是向量还是点,毕竟点与向量 ...

  5. rdlc报表 矩阵控件下的按组分页

    场景: 使用rdlc开发报表,例如订单产品报表,显示多个订单,一个订单有动态生成的固定的多个产品组成,同时统计每个订单里多个产品数量总数. 数据库层面分析: 此报表属于交叉报表,例如5个订单,3个产品 ...

  6. jzoj2701 【GDKOI2012模拟02.01】矩阵

    传送门:https://jzoj.net/senior/#main/show/2701 [题目大意] 给出矩阵A,求矩阵B,使得

  7. P6624-[省选联考2020A卷]作业题【矩阵树定理,欧拉反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P6624 题目大意 \(n\)个点的一张图,每条边有权值,一棵生成树的权值是所有边权和乘上边权的\(gcd\),即 ...

  8. C语言 · 矩阵乘法 · 算法训练

    问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...

  9. 获取Canvas当前坐标系矩阵

    前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...

随机推荐

  1. .NET Core Tools for Visual Studio 2015 安装失败

    You may be blocked from installing the .NET Core Tooling Preview 2 for Visual Studio 2015 installer ...

  2. 岭回归、LASSO与LAR的几何意义

    https://blog.csdn.net/u013524655/article/details/40922303 http://f.dataguru.cn/thread-598486-1-1.htm ...

  3. tomcat 、NIO、netty 本质

    tomcat 基于 Socket,面向 web 浏览器的通信容器 nio 同步非阻塞的I/O模型 netty 通信框架,对 nio 的封装

  4. linux常用命令:mv 命令

    mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 1.命令格式: mv [选项] 源文件或目 ...

  5. ::before 伪元素三角

    ul::before{ content: ''; width:; height:; border: 10px solid transparent; border-bottom: 10px solid ...

  6. Mybatis+MySQL动态分页查询

    https://blog.csdn.net/qq_34137397/article/details/63289621 mybatis有两种分页方法 1.内存分页,也就是假分页.本质是查出所有的数据然后 ...

  7. 10分钟看懂!基于Zookeeper的分布式锁

    实现分布式锁目前有三种流行方案,分别为基于数据库.Redis.Zookeeper的方案,其中前两种方案网络上有很多资料可以参考,本文不做展开.我们来看下使用Zookeeper如何实现分布式锁. 什么是 ...

  8. yii2项目中运行composer 过程中遇到的问题

    问题1: Your requirements could not be resolved to an installable set of packages 则表明 未安装fxp/composer-a ...

  9. Shell批量启动、关闭tomcat

    批量启动tomcat脚本,配置NUM可控制启动数量 #!/bin/bash #identifier CLUSTER_HOME=/opt/cluster-tomcat TNAME=tomcat-- TP ...

  10. NATS—协议详解(nats-protocol)

    NATS的协议是一个简单的.基于文本的发布/订阅风格的协议.客户端连接到 gnatsd(NATS服务器),并与 gnatsd 进行通信,通信基于普通的 TCP/IP 套接字,并定义了很小的操作集,换行 ...