思路

奇怪的结论题

考虑增量构造,题目要求每行每列都有偶数个1,奇偶性只需要增减1就能够调整了,所以最后一列一行一定能调整前面n-1阶矩阵的值,所以前面可以任选

答案是\(2^{(n-1)(m-1)}\)

当时怎么也考虑不清楚最后一行和最后一列交点的值,但是莽了一发发现对了。。

看了shadowice1984的题解之后才学会了证明

假设每行填的都是一个二进制数,最后一行填的必然是前面的异或和

因为每行的数都有偶数个二进制位,对于异或,有\(bitcount(a\oplus b)=bitcount(a)+bitcount(b)-2\times bitcount(a \& b)\)

所以最后一行必然有偶数个二进制位,必然合法

另外,长度为m的二进制数有偶数个二进制位的恰好有\(2^{m-1}\)个

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = 998244353;
int n,m;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
signed main(){
int T;
scanf("%lld",&T);
while(T--){
scanf("%lld %lld",&n,&m);
printf("%lld\n",pow(2,(n-1)*(m-1)));
}
return 0;
}

P5159 WD与矩阵的更多相关文章

  1. 洛谷P5159 WD与矩阵

    题目背景 WD整日沉浸在矩阵中,无法自拔-- 题目描述 WD特别喜欢矩阵,尤其是\(01\)矩阵. 一天,CX给了WD一个巨大的\(n\)行\(m\)列的\(01\)矩阵,WD发现这个矩阵每行.每列的 ...

  2. 某谷 P5159 WD与矩阵

    题面在这里 崴脚回家后的小休闲2333. 显然每一行的1的个数必须是偶数,这样可以归纳证明前i行异或出来的m位二进制数也有偶数个1,这样最后一行就有且仅有一种放法了. 于是ans = 2^((n-1) ...

  3. 2018年12月30&31日

    小结:昨天由于做的题目比较少,所以就和今天写在一块了,昨天学习了差分约束和树上差分,当然树上差分是用线段树来维护的,今天重点整理了博客\(233\),然后做了几个题. 一. 完成的题目: 洛谷P327 ...

  4. webgl开发第一道坎——矩阵与坐标变换

    一.齐次坐标 在3D世界中表示一个点的方式是:(x, y, z);然而在3D世界中表示一个向量的方式也是:(x, y, z);如果我们只给一个三元组(x, y, z)鬼知道这是向量还是点,毕竟点与向量 ...

  5. rdlc报表 矩阵控件下的按组分页

    场景: 使用rdlc开发报表,例如订单产品报表,显示多个订单,一个订单有动态生成的固定的多个产品组成,同时统计每个订单里多个产品数量总数. 数据库层面分析: 此报表属于交叉报表,例如5个订单,3个产品 ...

  6. jzoj2701 【GDKOI2012模拟02.01】矩阵

    传送门:https://jzoj.net/senior/#main/show/2701 [题目大意] 给出矩阵A,求矩阵B,使得

  7. P6624-[省选联考2020A卷]作业题【矩阵树定理,欧拉反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P6624 题目大意 \(n\)个点的一张图,每条边有权值,一棵生成树的权值是所有边权和乘上边权的\(gcd\),即 ...

  8. C语言 · 矩阵乘法 · 算法训练

    问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...

  9. 获取Canvas当前坐标系矩阵

    前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...

随机推荐

  1. html5-了解元素的属性

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  2. 大数据处理框架之Strom:容错机制

    1.集群节点宕机Nimbus服务器 单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可非Nimbus服务器 故障时,该节点上所有Task任务都会超时,Nimb ...

  3. 20165305 苏振龙《Java程序设计》第九周学习总结

    第十三章 Java网络编程 学习了解用于网络编程的类,了解URL.Socket.InetAddress和DatagramSocket类在网络编程中的重要作用 使用URL创建对象的应用程序称作客户端程序 ...

  4. Axure RP Extension for Chrome修复

    Axure RP Extension for Chrome安装之前一直用 Firefox 浏览器浏览原型文件,一直用不惯,而且用 Firefox 的唯一目的就是看原型.其他都是用 Chrome 浏览器 ...

  5. js中时间戳转换成时间格式

    js中时间戳转换成时间格式, // 时间戳转换成时间格式 var formatDate = function(date){ date = new Date(date); var y=date.getF ...

  6. ref 参数与out参数

    变量作为参数传给方法,同时希望在方法执行完成后对参数,反应到变量上面.就需要用到ref和out这两个参数. ref参数:在 传入前必须先初始化 out参数:不需要做预先的处理

  7. freemark、jsp&css

    **************************************************************freemark相关**************************** ...

  8. onclick 常用手册

    1.如何去使用onclick来跳转到我们指定的页面/跳转到指定url ☆如果只是在本页显示的话,可以直接用location, 方法如下: ①onclick="javascript:windo ...

  9. Twemproxy和Redis性能压力测试

    性能测试 Redis自带了一个叫 redis-benchmark的工具来模拟N个客户端同时发出M个请求,(类似于Apache ab程序),你可以使用redis-benchmark -h来查看基准参数. ...

  10. java使用ssh远程操作linux 提交spark jar

    maven依赖 <!--Java ssh-2 --><dependency> <groupId>ch.ethz.ganymed</groupId> &l ...