题目链接:洛谷LOJ.

FFT相关:快速傅里叶变换(FFT)详解FFT总结从多项式乘法到快速傅里叶变换.

5.4 又看了一遍,这个也不错。

2019.3.7 叕看了一遍,推荐这个

#include <cmath>
#include <cctype>
#include <cstdio>
#include <algorithm>
#define gc() getchar()
const int N=1e6+5;
const double PI=acos(-1); int n,m;
struct Complex
{
double x,y;
Complex(double xx=0,double yy=0) {x=xx, y=yy;}
Complex operator + (const Complex &a) {return Complex(x+a.x, y+a.y);}
Complex operator - (const Complex &a) {return Complex(x-a.x, y-a.y);}
Complex operator * (const Complex &a) {return Complex(x*a.x-y*a.y, x*a.y+y*a.x);}
}A[N*3],B[N*3];//size! void Fast_Fourier_Transform(Complex *a,int lim,int opt)
{
for(int j=0,i=0; i<lim; ++i)
{
if(i>j) std::swap(a[i],a[j]);
for(int l=lim>>1; (j^=l)<l; l>>=1);
}
for(int i=2; i<=lim; i<<=1)//最后等于lim即整个序列的合并
{
int mid=i>>1;
Complex Wn(cos(2.0*PI/i),opt*sin(2.0*PI/i)),t;
for(int j=0; j<lim; j+=i)
{
Complex w(1,0);
for(int k=0; k<mid; ++k,w=w*Wn)
a[j+mid+k]=a[j+k]-(t=w*a[j+mid+k]),
a[j+k]=a[j+k]+t;
}
}
}
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
} int main()
{
n=read(),m=read();
for(int i=0; i<=n; ++i) A[i].x=(double)read();//scanf("%lf",&A[i].x);
for(int i=0; i<=m; ++i) B[i].x=(double)read();//scanf("%lf",&B[i].x);
int lim=1;
while(lim<=n+m) lim<<=1;
Fast_Fourier_Transform(A,lim,1);
Fast_Fourier_Transform(B,lim,1);
for(int i=0; i<=lim; ++i) A[i]=A[i]*B[i];//size!
Fast_Fourier_Transform(A,lim,-1);
for(int i=0; i<=n+m; ++i) printf("%d ",(int)(A[i].x/lim+0.5)); return 0;
}

递归实现:

#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#define gc() getchar()
const int N=2e6+5;
const double PI=acos(-1.0); int n,m;
struct Complex
{
double x,y;
Complex(double xx=0,double yy=0) {x=xx, y=yy;}
Complex operator + (const Complex &a) {return Complex(x+a.x, y+a.y);}
Complex operator - (const Complex &a) {return Complex(x-a.x, y-a.y);}
Complex operator * (const Complex &a) {return Complex(x*a.x-y*a.y, x*a.y+y*a.x);}
}A[N],B[N]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
void Fast_Fourier_Transform(Complex *a,int lim,int type)
{
if(lim==1) return;
Complex a1[lim>>1],a2[lim>>1];//爆栈
for(int i=0; i<lim; i+=2)
a1[i>>1]=a[i], a2[i>>1]=a[i+1];
Fast_Fourier_Transform(a1,lim>>1,type),
Fast_Fourier_Transform(a2,lim>>1,type);
Complex Wn(cos(2.0*PI/lim),type*sin(2.0*PI/lim)),w(1,0),t;//Wn:单位根 w:幂
for(int i=0; i<(lim>>1); ++i,w=w*Wn)
a[i]=a1[i]+(t=w*a2[i]),
a[i+(lim>>1)]=a1[i]-t;
} int main()
{
n=read(),m=read();
for(int i=0; i<=n; ++i) A[i].x=read();
for(int i=0; i<=m; ++i) B[i].x=read();
int lim=1;
while(lim<=n+m) lim<<=1;
Fast_Fourier_Transform(A,lim,1);
Fast_Fourier_Transform(B,lim,1);
for(int i=0; i<=lim; ++i) A[i]=A[i]*B[i];
Fast_Fourier_Transform(A,lim,-1);
for(int i=0; i<=n+m; ++i) printf("%d ",(int)(A[i].x/lim+0.5)); return 0;
}

洛谷.3803.[模板]多项式乘法(FFT)的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  2. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  3. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  4. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  5. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  6. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  7. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  8. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  9. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

随机推荐

  1. 非常干货之Python资源大全

    非常干货之Python资源大全

  2. Pytorch之可视化

    先解决下keras可视化安装graphviz的问题: 注意安装顺序: sudo pip3 install graphviz # python包 sudo apt-get install graphvi ...

  3. js 当前时区

    function formatDateTime(formatDate){ //13位时间戳,java js. (php时间戳为10位) var returnDate; if(formatDate == ...

  4. Word打开默认显示缩略图,而不是文档结构图

    So easy! 1.打开Word文档,点击缩略图右侧的"X",关闭缩略图: 2.打开菜单[视图],勾选"文档结构图": 3.关闭当前Word文档: 4.再次打 ...

  5. Linux内存管理--物理内存分配【转】

    转自:http://blog.csdn.net/myarrow/article/details/8682819 1. First Fit分配器 First Fit分配器是最基本的内存分配器,它使用bi ...

  6. mac安装pyspider报错

    (env)$ pip3 uninstall pycurl (env)$ pip3 install --upgrade pip (env)$ export LDFLAGS=-L/usr/local/op ...

  7. 部署vCenter Server Appliance 6.7

    =============================================== 2019/4/14_第1次修改                       ccb_warlock == ...

  8. 瞅瞅!!免费看VIP视频的技巧

    最近再逛强大的知乎,发现一个免费看VIP视频的方法(腾讯是可能有点不稳定) 以爱奇艺为例: 复制URL到www.a6a6.org 把地址输入到输入框,点击开始 然后会提示你输入提取码 输入:22336 ...

  9. SpringMVC(4.1):Controller接口控制器详解(1)

    原文出处: 张开涛 4.1.Controller简介 Controller控制器,是MVC中的部分C,为什么是部分呢?因为此处的控制器主要负责功能处理部分: 1.收集.验证请求参数并绑定到命令对象: ...

  10. codeforce 139E

    成段更新+离散化才能过,数据好强.. 单点更新挂在了test27,下次做到成段更新再来做! /* 期望=存活概率*点权值/100 ans=sum(期望) 离散化树木权值,数轴统计累加可能倒下的树木概率 ...