what's the python之可迭代对象、迭代器与生成器(附面试题)
可迭代对象
字符串、列表、元祖、集合、字典都是可迭代的,数字是不可迭代的。(可以用for循环遍历取出内部元素的就是可迭代的)
如何查看一个变量是否为可迭代:
from collections import Iterable l = [1,2,3,4]
t = (1,2,3,4)
d = {1:2,3:4}
s = {1,2,3,4} print(isinstance(l,Iterable))
print(isinstance(t,Iterable))
print(isinstance(d,Iterable))
print(isinstance(s,Iterable))
#结果为True就是可迭代,False就是不可迭代
可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义就是内部实现了__iter__方法,即可迭代对象中封装有__iter__方法。
迭代器
迭代器:用变量调__iter__后就可以生成一个迭代器,迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。
l = [1,2,3,4]
l_iter = l.__iter__()#l_iter只是一个接受的变量
item = l_iter.__next__()#利用迭代器取值
print(item)#
item = l_iter.__next__()
print(item)#
item = l_iter.__next__()
print(item)#
item = l_iter.__next__()
print(item)#
item = l_iter.__next__()
print(item)#超出限度,报错
上步在最后出现了报错情况,为了使程序不报错,可以在取完了的最后将其终止掉:
l = [1,2,3,4]
l_iter = l.__iter__()
while True:
try:
item = l_iter.__next__()
print(item)
except StopIteration:
break
生成器
生成器:(本质就是一个迭代器,不过是由程序员写出来的才叫生成器,内置的就叫迭代器)
1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行,惰性。
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
简易生成器:
import time
def func():
a = 1
print('现在定义了a变量')
yield a
b = 2
print('现在又定义了b变量')
yield b g1 = func()
print('g1 : ',g1) #打印g1可以发现g1就是一个生成器
print('-'*20) #我是华丽的分割线
print(next(g1))
time.sleep(1) #sleep一秒看清执行过程
print(next(g1))#每print一次next才会出来一个yield的值,不然就挂在上一个yield上不继续执行
生成器有什么好处呢?就是不会一下子在内存中生成太多数据,只有在你要的时候才会给你你要的数据
生成器应用的几个小栗子:
有关衣服订单:
def produce():
"""生产衣服"""
for i in range(2000000):
yield "生产了第%s件衣服"%i product_g = produce()
print(product_g.__next__()) #要一件衣服
print(product_g.__next__()) #再要一件衣服
print(product_g.__next__()) #再要一件衣服
num = 0
for i in product_g: #要一批衣服,比如5件
print(i)
num +=1
if num == 5:
break #到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
#剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿
生成器监听文件输入的栗子:
import time def tail(filename):
f = open(filename)
f.seek(0, 2) #从文件末尾算起
while True:
line = f.readline() # 读取文件中新的文本行
if not line:
time.sleep(0.1)
continue
yield line tail_g = tail('tmp')
for line in tail_g:
print(line)
计算移动平均值(类似于年化收益):
def averager():
total = 0
day = 0
average = 0
while True:
term = yield average
total += term
day += 1
average = total/day g_avg = averager()
next(g_avg)
print(g_avg.send(10))
print(g_avg.send(12))
print(g_avg.send(13))
yield from可以在实行for循环的效果的同时将代码变少:
def gen1():
for c in 'AB':
yield c
for i in range(3):
yield i print(list(gen1()))#['A','B',1,2,3] #简化版本
def gen2():
yield from 'AB'
yield from range(3) print(list(gen2()))#['A','B',1,2,3]
列表推导式和生成器表达式:(这里用一个小故事讲解知识点)
#为了彰显高富帅本质,一口气买了十个茶叶蛋,将他们依次排开并编号,拍照发到朋友圈
egg_list=['茶叶蛋%s' %i for i in range(10)] #列表解析
#可是这十个茶叶蛋一口气吃不完啊,要吃也就是一个一个吃,那么就吃一个拍一个照吧
eat=('茶叶蛋%s' %i for i in range(10))#生成器表达式
print(eat)
print(next(eat)) #next本质就是调用__next__
print(eat.__next__())
print(next(eat))
高富帅与茶叶蛋
总结:
1.把列表解析的[]换成()得到的就是生成器表达式
2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存
3.Python使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。
附:与生成器相关的面试题:
def demo():
for i in range(4):
yield i g=demo() g1=(i for i in g)
g2=(i for i in g1) print(list(g1))#[0,1,2,3]
print(list(g2))#[]
面试题1
def add(n,i):
return n+i def test():
for i in range(4):
yield i g=test()
for n in [1,10]:
g=(add(n,i) for i in g) print(list(g))#[20,21,22,23]
面试题2
what's the python之可迭代对象、迭代器与生成器(附面试题)的更多相关文章
- 深入理解python中可迭代对象,迭代器,生成器
英文原文出处:Iterables vs. Iterators vs. Generators 在python学习中,通常会陷入对以下几个相关概念之间的确切差异的困惑中: a container(容器) ...
- python编程系列---可迭代对象,迭代器和生成器详解
一.三者在代码上的特征 1.有__iter__方法的对象就是可迭代类(对象) 2.有__iter__方法,__next()方法的对象就是迭代器3.生成器 == 函数+yield 生成器属于迭代器, 迭 ...
- 11.Python初窥门径(函数名,可迭代对象,迭代器)
Python(函数名,可迭代对象,迭代器) 一.默认参数的坑 # 比较特殊,正常来说临时空间执行结束后应该删除,但在这里不是. def func(a,l=[]): l.append(a) return ...
- Python中的可迭代对象/迭代器/For循环工作机制/生成器
本文分成6个部分: 1.iterable iterator区别 2.iterable的工作机制 3.iterator的工作机制 4.for循环的工作机制 5.generator的原理 6.总结 1.i ...
- Python进阶(三)----函数名,作用域,名称空间,f-string,可迭代对象,迭代器
Python进阶(三)----函数名,作用域,名称空间,f-string,可迭代对象,迭代器 一丶关键字:global,nonlocal global 声明全局变量: 1. 可以在局部作用域声明一 ...
- python 可迭代对象 迭代器 生成器总结
可迭代对象 只要有魔法方法__iter__的就是可迭代对象 list和tuple和dict都是可迭代对象 迭代器 只要有魔法方法__iter__和__next__的就是可迭代对象 生成器 只要含有y ...
- 可迭代对象&迭代器&生成器
在python中,可迭代对象&迭代器&生成器的关系如下图: 即:生成器是一种特殊的迭代器,迭代器是一种特殊的可迭代对象. 可迭代对象 如上图,这里x是一个列表(可迭代对象),其实正如第 ...
- python14 1.带参装饰器 | wrapper 了了解 # 2.迭代器 ***** # 可迭代对象 # 迭代器对象 # for迭代器 # 枚举对象
## 复习 '''函数的嵌套定义:在函数内部定义另一个函数 闭包:被嵌套的函数 -- 1.外层通过形参给内层函数传参 -- 2.验证执行 开放封闭原则: 功能可以拓展,但源代码与调用方式都不可以改变 ...
- python当中的 可迭代对象 迭代器
学习python有一段时间了,在学习过程中遇到很多难理解的东西,做一下总结,希望能对其他朋友有一些帮助. 完全是个人理解,难免有错,欢迎其他大神朋友们批评指正. 1 迭代 什么是迭代呢??我们可以这样 ...
随机推荐
- 移除input在type="number"时的上下箭头
网页在有些情况下,会需要input的输入的为单纯数字的文本框,此时type=number,但使用type=number时,输入框后面会有一个上下箭头,那么如何去掉上下箭头呢? <input ty ...
- Linux-C实现GPRS模块发送短信
“GSM模块,是将GSM射频芯片.基带处理芯片.存储器.功放器件等集成在一块线路板上,具有独立的操作系统.GSM射频处理.基带处理并提供标准接口的功能模块.GSM模块根据其提供的数据传输速率又可以分为 ...
- {Python之进程} 背景知识 什么是进程 进程调度 并发与并行 同步\异步\阻塞\非阻塞 进程的创建与结束 multiprocess模块 进程池和mutiprocess.Poll
Python之进程 进程 本节目录 一 背景知识 二 什么是进程 三 进程调度 四 并发与并行 五 同步\异步\阻塞\非阻塞 六 进程的创建与结束 七 multiprocess模块 八 进程池和mut ...
- ThinkPHP最简教程
这里不讲原理,只讲操作. 这里不说MVC,只说目录(文件夹)结构. 假设Apache Http Server.PHP.MySql都已经安装完毕并已配置完毕,能够输出phpinfo(). 框架是什么? ...
- Docker容器与容器云之Docker单机集群部署案例
准备工作: CentOS 7安装docker: #yum -y install docker 1.获取节点所需镜像 --主机执行 #docker pull django #docker pull ha ...
- 启用hive hwi方法
hive启动hwi: ./hive --service hwi ls: cannot access /opt/cdh-5.3.6/hive-0.13.1/lib/hive-hwi-*.war: No ...
- Mac开发博客摘录
https://blog.csdn.net/wangyouxiang/article/details/17855255 https://www.cocoacontrols.com/controls?p ...
- mysql表引擎myisam改为innodb
1.进入数据库 2.SELECT CONCAT('ALTER TABLE `', table_name, '` ENGINE=InnoDB;') AS sql_statements FROM ...
- 用SignalTap进行硬件仿真
写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...
- Instruments学习之Allocations
Allocations:检测一个进程(选择自己的app)内存分配和使用情况等 我们启动Allocations后得到一个初始界面 初始界面.png 简单说一下上图的3个地方 1:这里有两个部分了,因为官 ...