#define _CRT_SECURE_NO_WARNINGS
/*
5 5 8
4 3 6831
1 3 4583
0 0 6592
0 1 3063
3 3 4975
1 3 2049
4 2 2104
2 2 781
*/
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdio>
using namespace std; const int maxn = + ;
const int maxR = ;
const int INF = ;
int par[maxn]; //父亲, 当par[x] = x时,x是所在的树的根
int Rank[maxn]; //树的高度
int N, M, R;
int V, E;
int x[maxR], y[maxR], d[maxR]; struct edge
{
int u, v, cost;
edge(int u = , int v = , int cost = ) : u(u), v(v), cost(cost) {}
}; bool comp(const edge& e1, const edge& e2) {
return e1.cost < e2.cost;
} edge es[maxn]; //并查集实现-高效的判断是否属于同一个连通分量。
void init_union_find(int n);
int find(int x);
void unite(int x, int y);
bool same(int x, int y); //最小生成树
void input();
int kruskal(); //最小生成树算法
//最大权森林
void solve(); //初始化n个元素
void init_union_find(int n)
{
for (int i = ; i < n; i++) {
par[i] = i;
Rank[i] = ;
}
} //查询树的根
int find(int x) {
if (par[x] == x) {
return x;
}
else {
return par[x] = find(par[x]);
}
} //合并x和y所属集合
void unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y) return; if (Rank[x] < Rank[y]) {
par[x] = y;
}
else {
par[y] = x;
if (Rank[x] == Rank[y]) Rank[x]++; //如果x,y的树高相同,就让x的树高+1
}
} //判断x和y是否属于同一个集合
bool same(int x, int y) {
return find(x) == find(y);
} void input()
{
scanf("%d%d%d", &N, &M, &R);
for (int i = ; i < R; i++) {
scanf("%d%d%d", &x[i], &y[i], &d[i]);
}
} int kruskal()
{
sort(es, es + E, comp); //按照edge.cost的顺序从小到大排序
init_union_find(V); //将并查集初始化
int res = ;
for (int i = ; i < E; i++) {
edge e = es[i];
if (!same(e.u, e.v)) {
unite(e.u, e.v);
res += e.cost;
}
}
return res;
} void solve()
{
V = N + M;
E = R;
for (int i = ; i < R; i++) {
es[i] = edge(x[i], N + y[i], -d[i]);
}
int res = kruskal();
//cout << "Debug" << res << endl;
cout << * (N + M) + res << endl; //kruskal结果是-d[i]
} int main()
{
input();
solve();
return ;
}

kruskal算法:POJ No.3723 Conscription_最小生成树应用_最大权森林的更多相关文章

  1. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  2. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  3. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  4. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  5. ZOJ1372 POJ 1287 Networking 网络设计 Kruskal算法

    题目链接:problemCode=1372">ZOJ1372 POJ 1287 Networking 网络设计 Networking Time Limit: 2 Seconds     ...

  6. poj 1789 Truck History(kruskal算法)

    主题链接:http://poj.org/problem?id=1789 思维:一个一个点,每两行之间不懂得字符个数就看做是权值.然后用kruskal算法计算出最小生成树 我写了两个代码一个是用优先队列 ...

  7. POJ 1797 kruskal 算法

    题目链接:http://poj.org/problem?id=1797 开始题意理解错.不说题意了. 并不想做这个题,主要是想测试kruskal 模板和花式并查集的正确性. 已AC: /* 最小生成树 ...

  8. POJ 1251 Jungle Roads - C语言 - Kruskal算法

    Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid ...

  9. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

随机推荐

  1. Linux运维工程师必须掌握的基础技能有哪些?

    这个问题挺好的,回答这个问题也是对自身的审查,看看自己还欠缺哪些.(所以我估计得好好思考下,也许下一刻我就会突然惊醒,发现我还是战⑤渣) 首先限定在Linux运维工程师上 回答仅代表我想到,不代表我都 ...

  2. add (db.collection.add)添加数据

    db.collection('cheshi').add({ data: { cheshi:4, } }).then((res) => { console.log(res) })

  3. 设计模式之抽象工厂模式(附带类似反射功能的实现/c++)

    问题描述 假设我们要开发一款游戏, 当然为了吸引更多的人玩, 游戏难度不能太大(让大家都没有信心了,估计游戏也就没有前途了),但是也不能太简单(没有挑战性也不符合玩家的心理).于是我们就可以采用这样一 ...

  4. ADOTable的CancelUpdate和CancelBatch的区别?(100分)

    出差新疆,修改别人的代码,请教CancelUpdate和CancelBatch的区别! 如果希望取消对当前记录所做的任何更改或者放弃新添加的记录,则必须调用CancelUpdate 方法CancelB ...

  5. jquery 語法

    基本形式: $(selector).action() 文檔加載函數: $(document).Ready{ function(){ //將所有的函數寫到文檔加載函數里,可以防止頁面未加載完全,就執行j ...

  6. codeforces631B

    Print Check CodeForces - 631B Kris works in a large company "Blake Technologies". As a bes ...

  7. git-stash用法小结

    [时间:2016-10] [状态:Open] [关键词:git,版本控制,版本管理,stash,git储藏] 缘起 今天在看一个bug,之前一个分支的版本是正常的,在新的分支上上加了很多日志没找到原因 ...

  8. 一个死循环导致的栈溢出实例:StackOverFlowError

    有一个功能,要用复选框组做成单选框效果,如果有三个复选框 CheckBox ,并且保证每次只能选中一个.刚开始添加了以下的值改变后的监听方法 addValueChangeListener ,却导致了栈 ...

  9. MT【35】用复数得到的两组恒等式

    特别的,当$r\rightarrow1^{-}$时有以下两个恒等式: 第二个恒等式有关的自主招生试题参考博文MT[31]傅里叶级数为背景的三角求和 评:利用两种展开形式得到一些恒等式是复数里经常出现的 ...

  10. Java -- JDBC 学习--通过 ResultSet 执行查询操作

    ResultSet: 结果集. 封装了使用 JDBC 进行查询的结果. 1. 调用 Statement 对象的 executeQuery(sql) 可以得到结果集. 2. ResultSet 返回的实 ...