二值化函数cvThreshold()参数CV_THRESH_OTSU的疑惑【转】
查看OpenCV文档cvThreshold(),在二值化函数cvThreshold(const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type)中,参数threshold_type有5种类型:
- THRESH_BINARY
- THRESH_BINARY_INV
- THRESH_TRUNC
- THRESH_TOZERO
- THRESH_TOZERO_INV
问题来了:为什么可以在threshold_type参数中使用CV_THRESH_OTSU,在哪里可以查看这种OTSU,它用的什么方法?经多次验证,二值化的效果很好,且速度很快。
已经有一些同志在使用:
例证1:例证1
例证2:例证2
例证3:例证3
我的遭遇:为了二值化一个比较大的图像(10M,3840*2748),痛苦的看了各种论文,尝试了各种的二值化方法:一维OTSU,快速迭代的一维OTSU,二维的OTSU,快速迭代的二维OTSU。但现实的残酷的!只有二维的OTSU和快速迭代的OTSU可用,但前者处理时间让人难以接受,后者也要500多个ms。 快速迭代的二维OTSU算法是根据吴一全老师的《二维最大类间方差阈值分割的快速迭代算法》(论文下载链接,提取码:fd0b)来实现的。但是令我哭笑不得的是,无意中在网上发现了一种方法threshold_type使用参数使用CV_THRESH_OTSU时,时间却大大的缩短。程序如下(
程序下载链接提取码:fd0b),图像下载 (提取码:24f3)。
/* otsu_2d:二维最大类间方差阈值分割的快速迭代算法 吴一全 */
#include <iostream>
#include <cv.h>
#include <highgui.h> using namespace std;
double TwoDimentionOtsu(IplImage *image);
int main()
{
IplImage* srcImage = cvLoadImage( "E:/image_1/14.bmp", );
assert(NULL != srcImage); cvNamedWindow("src",);
cvShowImage("src",srcImage); clock_t start_time=clock(); //计算最佳阈值
double threshold = TwoDimentionOtsu(srcImage);//70,125 clock_t end_time=clock();
cout<< "Running time is: "<<static_cast<double>(end_time-start_time)/CLOCKS_PER_SEC*<<"ms"<<endl;//输出运行时间 cout << "threshold=" << threshold << endl; IplImage* biImage = cvCreateImage(cvGetSize(srcImage),,);
//对图像二值化
//cvThreshold(srcImage,biImage,255,255, CV_THRESH_OTSU | CV_THRESH_BINARY);
cvThreshold(srcImage,biImage,threshold,, CV_THRESH_BINARY); cvNamedWindow("binary",);
cvShowImage("binary",biImage); cvWaitKey(); cvReleaseImage(&srcImage);
cvReleaseImage(&biImage); cvDestroyAllWindows(); return ;
}
double TwoDimentionOtsu(IplImage *image)
{
double t0 = , s0 = , t = , s = ;
int width = image->width;
int height = image->height;
double dHistogram[][]={0.0}; //建立二维灰度直方图
unsigned long sum0 = ,sum1 = ; //sum0记录所有的像素值的总和,sum1记录3x3窗口的均值的总和
uchar* data = (uchar*)image->imageData;
for(int i=; i<height; i++)
{
for(int j=; j<width; j++)
{
unsigned char nData1 = data[i * image->widthStep + j];//nData1记录当前点(i,j)的像素值
sum0 += nData1;
unsigned char nData2 = ; //nData2记录以当前点(i,j)为中心三领域像素值的平均值
int nData3 = ; //nData3记录以当前点(i,j)为中心三领域像素值之和,注意9个值相加可能超过一个字节
for(int m=i-; m<=i+; m++)
{
for(int n=j-; n<=j+; n++)
{
if((m>=)&&(m<height)&&(n>=)&&(n<width))
nData3 += data[m * image->widthStep + n];
}
}
nData2 = (unsigned char)(nData3/); //对于越界的索引值进行补零,邻域均值
sum1 += nData2;
dHistogram[nData1][nData2]++;
}
} long N = height*width; //总像素数
t = sum0/N; //图像灰度级均值
s = sum1/N; //邻域平均灰度级的均值 s0 = s;
t0 = t;
for(int j=; j<; j++)
for(int i=; i<; i++)
{
dHistogram[i][j] = dHistogram[i][j]/N; //得到归一化的概率分布
} double w0 = 0.0,w1 = 0.0,u0i = 0.0,u1i = 0.0,u0j = 0.0,u1j = 0.0; do
{
t0 = t;
s0 = s;
w0 = w1 = u0i = u1i = u0j = u1j = 0.0;
for (int i = ,j; i < ; i++)
{
for (j = ; j < s0; j++)
{
w0 += dHistogram[i][j];
u0j += dHistogram[i][j] * j;
} for (; j < ; j++)
{
w1 += dHistogram[i][j];
u1j += dHistogram[i][j] * j;
} }
for (int j = ,i = ; j < ; j++)
{
for (i = ; i < t0; i++)
u0i += dHistogram[i][j] * i;
for (; i < ; i++)
u1i += dHistogram[i][j] * i;
}
u0i /= w0;
u1i /= w1 ;
u0j /= w0;
u1j /= w1; t = (u0i + u1i)/;
s = (u0j + u1j)/;
}while ( t != t0);//是否可以用这个做为判断条件,有待考究,请高手指点 return t;//只用t做为阈值,个人也感觉不妥,但没有找到更好的方法,请高手指点 }
输出结果:

cvThreshold()参数设为CV_THRESH_OTSU,输入结果:
二值化函数cvThreshold()参数CV_THRESH_OTSU的疑惑【转】的更多相关文章
- Win8MetroC#数字图像处理--2.2图像二值化函数
原文:Win8MetroC#数字图像处理--2.2图像二值化函数 [函数代码] /// <summary> /// Binary process. /// </summary> ...
- opencv-python图像二值化函数cv2.threshold函数详解及参数cv2.THRESH_OTSU使用
cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(i ...
- OpenCV图像的全局阈值二值化函数(OTSU)
cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最 ...
- 【转载】opencv 二值化函数——cv2.threshold
https://blog.csdn.net/weixin_38570251/article/details/82079080 threshold:固定阈值二值化, ret, dst = cv2.thr ...
- MATLAB实现二值化函数
function bc = binary_conversion(a) %这是灰度值二值化转换函数,阈值为平均值j=imread(a); %读取灰度图像 j=double ...
- python的N个小功能(图片预处理:打开图片,滤波器,增强,灰度图转换,去噪,二值化,切割,保存)
############################################################################################# ###### ...
- 【转】Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...
- [转载+原创]Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...
- python实现图像二值化
1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...
随机推荐
- mongo3.x配置说明
Mongodb 3.x配置说明,本文内容忽略了Enterprise版和一些不常用的配置. 一.配置说明 在Mongod安装包中,包含2个进程启动文件:mongod和mongos:其中mongd是核心基 ...
- python全栈开发day43-javascript
一.昨日内容回顾 1.绝对定位的盒子居中 left:50%: margin-left:负的盒子宽度的一半 2.固定位置 脱离标准文档流 作用:返回顶部,广告,滚动监听栏.固定导航栏(body{marg ...
- MySQL_join连接
join连接 table1: table2: 笛卡尔积: 就是一个表里的记录要分别和另外一个表的记录匹配为一条记录,即如果表A有2条记录,表B也有2条记录,经过笛卡尔运算之后就应该有2*2即4条记录. ...
- java web开发阅读笔记:第一章
学习该书前所用推荐书籍<名师讲坛—java开发实战经典> 一web开发前奏 1.1网页发展 首先搞懂. 1.HTTP:超级文本传输协议,是一种通讯协议. 通过这个网络协议WW浏览器与WWW ...
- Ubuntu 下常用命令
整理一下比较常用的操作命令: 附上一个Linux 命令大全: http://man.linuxde.net/ 打开终端:Ctrl+Alt+T ls: ls : 查看当前路径下的文件夹以及文件 ls + ...
- poj 2253 Frogger (最小最大路段)【dijkstra】
<题目链接> 题目大意: 给出青蛙A,B和若干石头的坐标,现青蛙A想到青蛙B那,A可通过任意石头到达B,问从A到B多条路径中最小的最长边. 解题分析: 这是最短路的一类典型题目,与普通的最 ...
- 模拟页面获取的php数据(四)
<?php $tqzf = [ "aData" => [//通勤方式 "trafficType" => [ 0 => [ "t ...
- grpc 使用总结
1.grpc支持多种语言,需要根据pb文件创建出相应java文件. 2.构建服务端. 3.构建客户端. 4.grpc对象基于创建者模式.
- Python3正则表示式(3)
正则表示式对象 对象1: 案例1: import re example = 'ShanDong Institute of Business and Technology' pattern = re.c ...
- 喵哈哈村的魔法考试 Round #19 (Div.2) 题解
题解: 喵哈哈村的魔力源泉(1) 题解:签到题. 代码: #include<bits/stdc++.h> using namespace std; int main(){ long lon ...