查看OpenCV文档cvThreshold(),在二值化函数cvThreshold(const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type)中,参数threshold_type有5种类型:

  • THRESH_BINARY
  • THRESH_BINARY_INV
  • THRESH_TRUNC
  • THRESH_TOZERO
  • THRESH_TOZERO_INV

问题来了:为什么可以在threshold_type参数中使用CV_THRESH_OTSU,在哪里可以查看这种OTSU,它用的什么方法?经多次验证,二值化的效果很好,且速度很快。
已经有一些同志在使用:
例证1:例证1
例证2:例证2
例证3:例证3

我的遭遇:为了二值化一个比较大的图像(10M,3840*2748),痛苦的看了各种论文,尝试了各种的二值化方法:一维OTSU,快速迭代的一维OTSU,二维的OTSU,快速迭代的二维OTSU。但现实的残酷的!只有二维的OTSU和快速迭代的OTSU可用,但前者处理时间让人难以接受,后者也要500多个ms。        快速迭代的二维OTSU算法是根据吴一全老师的《二维最大类间方差阈值分割的快速迭代算法》(论文下载链接,提取码:fd0b)来实现的。但是令我哭笑不得的是,无意中在网上发现了一种方法threshold_type使用参数使用CV_THRESH_OTSU时,时间却大大的缩短。程序如下(
程序下载链接提取码:fd0b),图像下载  (提取码:24f3)。

/* otsu_2d:二维最大类间方差阈值分割的快速迭代算法   吴一全 */
#include <iostream>
#include <cv.h>
#include <highgui.h> using namespace std;
double TwoDimentionOtsu(IplImage *image);
int main()
{
IplImage* srcImage = cvLoadImage( "E:/image_1/14.bmp", );
assert(NULL != srcImage); cvNamedWindow("src",);
cvShowImage("src",srcImage); clock_t start_time=clock(); //计算最佳阈值
double threshold = TwoDimentionOtsu(srcImage);//70,125 clock_t end_time=clock();
cout<< "Running time is: "<<static_cast<double>(end_time-start_time)/CLOCKS_PER_SEC*<<"ms"<<endl;//输出运行时间 cout << "threshold=" << threshold << endl; IplImage* biImage = cvCreateImage(cvGetSize(srcImage),,);
//对图像二值化
//cvThreshold(srcImage,biImage,255,255, CV_THRESH_OTSU | CV_THRESH_BINARY);
cvThreshold(srcImage,biImage,threshold,, CV_THRESH_BINARY); cvNamedWindow("binary",);
cvShowImage("binary",biImage); cvWaitKey(); cvReleaseImage(&srcImage);
cvReleaseImage(&biImage); cvDestroyAllWindows(); return ;
}
double TwoDimentionOtsu(IplImage *image)
{
double t0 = , s0 = , t = , s = ;
int width = image->width;
int height = image->height;
double dHistogram[][]={0.0}; //建立二维灰度直方图
unsigned long sum0 = ,sum1 = ; //sum0记录所有的像素值的总和,sum1记录3x3窗口的均值的总和
uchar* data = (uchar*)image->imageData;
for(int i=; i<height; i++)
{
for(int j=; j<width; j++)
{
unsigned char nData1 = data[i * image->widthStep + j];//nData1记录当前点(i,j)的像素值
sum0 += nData1;
unsigned char nData2 = ; //nData2记录以当前点(i,j)为中心三领域像素值的平均值
int nData3 = ; //nData3记录以当前点(i,j)为中心三领域像素值之和,注意9个值相加可能超过一个字节
for(int m=i-; m<=i+; m++)
{
for(int n=j-; n<=j+; n++)
{
if((m>=)&&(m<height)&&(n>=)&&(n<width))
nData3 += data[m * image->widthStep + n];
}
}
nData2 = (unsigned char)(nData3/); //对于越界的索引值进行补零,邻域均值
sum1 += nData2;
dHistogram[nData1][nData2]++;
}
} long N = height*width; //总像素数
t = sum0/N; //图像灰度级均值
s = sum1/N; //邻域平均灰度级的均值 s0 = s;
t0 = t;
for(int j=; j<; j++)
for(int i=; i<; i++)
{
dHistogram[i][j] = dHistogram[i][j]/N; //得到归一化的概率分布
} double w0 = 0.0,w1 = 0.0,u0i = 0.0,u1i = 0.0,u0j = 0.0,u1j = 0.0; do
{
t0 = t;
s0 = s;
w0 = w1 = u0i = u1i = u0j = u1j = 0.0;
for (int i = ,j; i < ; i++)
{
for (j = ; j < s0; j++)
{
w0 += dHistogram[i][j];
u0j += dHistogram[i][j] * j;
} for (; j < ; j++)
{
w1 += dHistogram[i][j];
u1j += dHistogram[i][j] * j;
} }
for (int j = ,i = ; j < ; j++)
{
for (i = ; i < t0; i++)
u0i += dHistogram[i][j] * i;
for (; i < ; i++)
u1i += dHistogram[i][j] * i;
}
u0i /= w0;
u1i /= w1 ;
u0j /= w0;
u1j /= w1; t = (u0i + u1i)/;
s = (u0j + u1j)/;
}while ( t != t0);//是否可以用这个做为判断条件,有待考究,请高手指点 return t;//只用t做为阈值,个人也感觉不妥,但没有找到更好的方法,请高手指点 }

输出结果:

 cvThreshold()参数设为CV_THRESH_OTSU,输入结果:

二值化函数cvThreshold()参数CV_THRESH_OTSU的疑惑【转】的更多相关文章

  1. Win8MetroC#数字图像处理--2.2图像二值化函数

    原文:Win8MetroC#数字图像处理--2.2图像二值化函数 [函数代码] /// <summary> /// Binary process. /// </summary> ...

  2. opencv-python图像二值化函数cv2.threshold函数详解及参数cv2.THRESH_OTSU使用

    cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(i ...

  3. OpenCV图像的全局阈值二值化函数(OTSU)

    cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最 ...

  4. 【转载】opencv 二值化函数——cv2.threshold

    https://blog.csdn.net/weixin_38570251/article/details/82079080 threshold:固定阈值二值化, ret, dst = cv2.thr ...

  5. MATLAB实现二值化函数

    function  bc = binary_conversion(a)  %这是灰度值二值化转换函数,阈值为平均值j=imread(a);             %读取灰度图像   j=double ...

  6. python的N个小功能(图片预处理:打开图片,滤波器,增强,灰度图转换,去噪,二值化,切割,保存)

    ############################################################################################# ###### ...

  7. 【转】Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化

    局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...

  8. [转载+原创]Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化

    局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...

  9. python实现图像二值化

    1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...

随机推荐

  1. [转] SSO单点登录原理和流程分析

    WEB的登录那些事#### 说道账户登录和注册,其实我们每天都在亲身感受着,像微博.知乎还有简书等等.我们总是需要定期的去重新登录一下,对于这种认证机制,我们都能说出来两个名词,Cookie.Sess ...

  2. SQL中IN和EXISTS用法的区别

    结论 1. in()适合B表比A表数据小的情况 2. exists()适合B表比A表数据大的情况 当A表数据与B表数据一样大时,in与exists效率差不多,可任选一个使用. select * fro ...

  3. BZOJ1146 [CTSC2008]网络管理Network 树链剖分 主席树 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1146 题意概括 在一棵树上,每一个点一个权值. 有两种操作: 1.单点修改 2.询问两点之间的树链 ...

  4. html,css.javascript

    基本标签(a.p.img.li.table.div.span).表单标签.iframe.frameset.样式 1:Html  (Hypertext Markup Language) 超文本标记语言 ...

  5. Hdu-1358Period(KMP算法之next数组的应用)

    题解:对于串pattern来说,如果0~i-1这个位置中循环,那么i%(i-next[i])==0 ,循环次数为 i/(i-next[i]),循环长度为 i-next[i] 例如对于串ababab来说 ...

  6. ubuntu安装mysql 时未提示输入密码

    我在Ubuntu16.04版本中使用终端安装MySQL5.7时,按照度娘的教程,搜索如何安装,大多是如下代码: sudo apt-get install mysql-server sudo apt-g ...

  7. NODESCHOOL

    来源:https://nodeschool.io/zh-cn/ 核心基础课程(Core) javascripting 学习 JavaScript 语言的基础,无需任何编程经验 npm install ...

  8. 连接池commons-pool2

    commons-pool2池技术可以应用在对象上构建对象池,也可以用在http连接或者netty连接 构建连接池,池技术为了节省对象创建销毁或连接资源频繁申请销毁带来的时间消费. 当用于连接池在进行扩 ...

  9. 新巴巴运动网上商城 项目 快速搭建 教程 The new babar sports online mall project quickly builds a tutorial

    新巴巴运动网上商城 项目 快速搭建 教程 The new babar sports online mall project quickly builds a tutorial 作者:韩梦飞沙 Auth ...

  10. COGS.1317.数列操作c(分块 区间加 区间求和)

    题目链接 #include<cmath> #include<cstdio> #include<cctype> #include<algorithm> u ...