题意:求多项式的逆

题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B

假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\),\(A(x)*B'(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\)

两式相减得\(B(x)-B'(x)\equiv 0(mod x^{\lceil \frac{n}{2} \rceil})\),平方得\(B(x)^2-2*B(x)*B'(x)+B'(x)^2\equiv 0(mod x^n)\)

注意到mod数也平方了,这是因为如果\(A(x)\equiv 0(modx^n)\),就说明A的0-n-1项都是0,对于n到2*n-1项第x项来说有\(\sum_{i=1}^x A(i)*A(x-i)\),一定有一项小于n,则必为0

对于上式,两边同乘A(x),则有\(B(x)=2*B'(x)-A(x)*B'(x)\)

可以递推解决

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f; ll a[N<<3],b[N<<3],c[N<<3];
int rev[N<<3];
void getrev(int bit)
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void ntt(ll *a,int n,int dft)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int step=1;step<n;step<<=1)
{
ll wn=qp(3,(mod-1)/(step*2));
if(dft==-1)wn=qp(wn,mod-2);
for(int j=0;j<n;j+=step<<1)
{
ll wnk=1;
for(int k=j;k<j+step;k++)
{
ll x=a[k];
ll y=wnk*a[k+step]%mod;
a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
wnk=wnk*wn%mod;
}
}
}
if(dft==-1)
{
ll inv=qp(n,mod-2);
for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
}
}
void pol_inv(int deg,ll *a,ll *b)
{
if(deg==1){b[0]=qp(a[0],mod-2);return ;}
pol_inv((deg+1)>>1,a,b);
int sz=0;while((1<<sz)<=deg)sz++;sz++;
getrev(sz);int len=1<<sz;
for(int i=0;i<deg;i++)c[i]=a[i];
for(int i=deg;i<len;i++)c[i]=0;
ntt(c,len,1),ntt(b,len,1);
for(int i=0;i<len;i++)
b[i]=(2ll-c[i]*b[i]%mod+mod)%mod*b[i]%mod;
ntt(b,len,-1);
for(int i=deg;i<len;i++)b[i]=0;
}
int main()
{
int n;scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%lld",&a[i]);
pol_inv(n,a,b);
for(int i=0;i<n;i++)printf("%lld ",b[i]);puts("");
return 0;
}
/******************** ********************/

P4238 【模板】多项式求逆 ntt的更多相关文章

  1. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  2. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  3. 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数

    出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...

  4. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  5. luoguP4238 【模板】多项式求逆 NTT

    Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...

  6. Luogu4512 【模板】多项式除法(多项式求逆+NTT)

    http://blog.miskcoo.com/2015/05/polynomial-division 好神啊! 通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关. #include ...

  7. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  8. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  9. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

随机推荐

  1. html 之 body topmargin、leftmargin、rightmargin、bottomnargin

    基本语法 <body topmargin=value leftmargin=value rightmargin=value bottomnargin=value> 语法说明 通过设置top ...

  2. Vue.extend构造器和$mount实例构造组件后可以用$destroy()进行卸载,$forceUpdate()进行更新,$nextTick()数据修改

    html <div id="app"> </div> <p><button onclick="destroy()"&g ...

  3. 【译】第42节---EF6-DbSet.AddRange & DbSet.RemoveRange

    原文:http://www.entityframeworktutorial.net/entityframework6/addrange-removerange.aspx EF 6中的DbSet引入了新 ...

  4. SAP字段与表的对应关系

    SAP字段与表的对应关系   MASTER DATA-主数据 Customer Master KNA1                         Customer Basic Data KNB1 ...

  5. SPOJ 694 Distinct Substrings(不相同子串个数)

    https://vjudge.net/problem/SPOJ-DISUBSTR 题意: 给定一个字符串,求不相同的子串的个数. 思路: #include<iostream> #inclu ...

  6. HDU 1403 Longest Common Substring(最长公共子串)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 题意:给出两个字符串,求最长公共子串的长度. 思路: 刚开始学后缀数组,确实感觉很难,但是这东西很强大,所 ...

  7. Linux命令之locate命令

    1.locate locate 命令是文件搜索命令,它的搜索速度比 find 命令更快,原因在于它不搜索具体目录, 而是搜索一个数据库,这个数据库包含本地所有文件信息.Linux系统自动创建这个数据库 ...

  8. 【一】jquery之subline编辑器插件安装

    1.地址下载:https://pan.baidu.com/share/link?shareid=552312&uk=151954025 2.打开Sublime, 选择 Prefreences  ...

  9. 初识unittest

    unittest是python自带的一个标准木块,单元测试框架 unittest基本使用方法: 我们需要先导入unittest (import unittest) import unittest 定义 ...

  10. Python.错误解决:scrapy 没有crawl 命令

    确保2点: 1.把爬虫.py复制到spiders文件夹里 如执行scrapy crawl demo ,spiders里面就要有demo.py文件 2.在项目文件夹内执行命令 在scrapy.cfg所在 ...