题意:求多项式的逆

题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B

假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\),\(A(x)*B'(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\)

两式相减得\(B(x)-B'(x)\equiv 0(mod x^{\lceil \frac{n}{2} \rceil})\),平方得\(B(x)^2-2*B(x)*B'(x)+B'(x)^2\equiv 0(mod x^n)\)

注意到mod数也平方了,这是因为如果\(A(x)\equiv 0(modx^n)\),就说明A的0-n-1项都是0,对于n到2*n-1项第x项来说有\(\sum_{i=1}^x A(i)*A(x-i)\),一定有一项小于n,则必为0

对于上式,两边同乘A(x),则有\(B(x)=2*B'(x)-A(x)*B'(x)\)

可以递推解决

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f; ll a[N<<3],b[N<<3],c[N<<3];
int rev[N<<3];
void getrev(int bit)
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void ntt(ll *a,int n,int dft)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int step=1;step<n;step<<=1)
{
ll wn=qp(3,(mod-1)/(step*2));
if(dft==-1)wn=qp(wn,mod-2);
for(int j=0;j<n;j+=step<<1)
{
ll wnk=1;
for(int k=j;k<j+step;k++)
{
ll x=a[k];
ll y=wnk*a[k+step]%mod;
a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
wnk=wnk*wn%mod;
}
}
}
if(dft==-1)
{
ll inv=qp(n,mod-2);
for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
}
}
void pol_inv(int deg,ll *a,ll *b)
{
if(deg==1){b[0]=qp(a[0],mod-2);return ;}
pol_inv((deg+1)>>1,a,b);
int sz=0;while((1<<sz)<=deg)sz++;sz++;
getrev(sz);int len=1<<sz;
for(int i=0;i<deg;i++)c[i]=a[i];
for(int i=deg;i<len;i++)c[i]=0;
ntt(c,len,1),ntt(b,len,1);
for(int i=0;i<len;i++)
b[i]=(2ll-c[i]*b[i]%mod+mod)%mod*b[i]%mod;
ntt(b,len,-1);
for(int i=deg;i<len;i++)b[i]=0;
}
int main()
{
int n;scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%lld",&a[i]);
pol_inv(n,a,b);
for(int i=0;i<n;i++)printf("%lld ",b[i]);puts("");
return 0;
}
/******************** ********************/

P4238 【模板】多项式求逆 ntt的更多相关文章

  1. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  2. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  3. 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数

    出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...

  4. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  5. luoguP4238 【模板】多项式求逆 NTT

    Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...

  6. Luogu4512 【模板】多项式除法(多项式求逆+NTT)

    http://blog.miskcoo.com/2015/05/polynomial-division 好神啊! 通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关. #include ...

  7. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  8. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  9. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

随机推荐

  1. Many Website Of WallPaper

    我在这里给大家推荐几个不错的壁纸网站 毕竟一张赏心悦目的壁纸能让你的工作效率提高不少 注意前方高能 一大波网站即将来袭 一系列 如你所见 alphacoders wallpaperdj Wallhav ...

  2. promise对象的使用

    ES6中的promise的出现给我们很好的解决了回调地狱的问题,在使用ES5的时候,在多层嵌套回调时,写完的代码层次过多,很难进行维护和二次开发,ES6认识到了这点问题, 现在promise的使用,完 ...

  3. js操作css变量

    原文:http://css-live.ru/articles/dostup-k-css-peremennym-i-ix-izmenenie-spomoshhyu-javascript.html :ro ...

  4. 在 2016 年学 JavaScript 是一种什么样的体验?(React从入门到放弃)

    jquery 年代 vs 前端模块化 http://blog.csdn.net/offbye/article/details/52793921 ++ 嘿,我最近接到一个 Web 项目,不过老实说,我这 ...

  5. js为什么返回两个对象字符串 objcet objcet ?

    js中两个使用 toString() 对有个有对象的数组进行操作时,为什么返回两个对象字符串 objcet objcet ? [{}].toString(); 返回 "[object Obj ...

  6. Vs Code搭建 TypeScript 开发环境

    一.npm install -g typescript 全局安装TypeScript   二.使用Vs Code打开已创建的文件夹,使用快捷键Ctrl+~启动终端输入命令 tsc --init 创建t ...

  7. NOIP2018退役祭

    退役感受 在写下这个标题的时候,我的心情是复杂的,无非就是感觉像对一位将要赶往战场的士兵说:"你的战争已经输掉了." 退役了,没有什么好说的.无论再怎么抱怨这题出的真烂也无法改变了 ...

  8. HDU 3047 Zjnu Stadium(带权并查集)

    http://acm.hdu.edu.cn/showproblem.php?pid=3047 题意: 给出n个座位,有m次询问,每次a,b,d表示b要在a右边d个位置处,问有几个询问是错误的. 思路: ...

  9. toggle 1.9 以后就被删除了

    toggle 1.9 以后就被删除了, 1.8.x  以前可用. $(function(){ $(".p_title").toggle( function(){ $(this).n ...

  10. restFul接口设计规范

    1.域名 1 应该尽量将API部署在专用域名之下. https://api.example.com 2 如果确定API很简单,不会有进一步扩展,可以考虑放在主域名下. https://example. ...