P4238 【模板】多项式求逆 ntt
题意:求多项式的逆
题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B
假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\),\(A(x)*B'(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\)
两式相减得\(B(x)-B'(x)\equiv 0(mod x^{\lceil \frac{n}{2} \rceil})\),平方得\(B(x)^2-2*B(x)*B'(x)+B'(x)^2\equiv 0(mod x^n)\)
注意到mod数也平方了,这是因为如果\(A(x)\equiv 0(modx^n)\),就说明A的0-n-1项都是0,对于n到2*n-1项第x项来说有\(\sum_{i=1}^x A(i)*A(x-i)\),一定有一项小于n,则必为0
对于上式,两边同乘A(x),则有\(B(x)=2*B'(x)-A(x)*B'(x)\)
可以递推解决
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f;
ll a[N<<3],b[N<<3],c[N<<3];
int rev[N<<3];
void getrev(int bit)
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
}
void ntt(ll *a,int n,int dft)
{
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int step=1;step<n;step<<=1)
{
ll wn=qp(3,(mod-1)/(step*2));
if(dft==-1)wn=qp(wn,mod-2);
for(int j=0;j<n;j+=step<<1)
{
ll wnk=1;
for(int k=j;k<j+step;k++)
{
ll x=a[k];
ll y=wnk*a[k+step]%mod;
a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
wnk=wnk*wn%mod;
}
}
}
if(dft==-1)
{
ll inv=qp(n,mod-2);
for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
}
}
void pol_inv(int deg,ll *a,ll *b)
{
if(deg==1){b[0]=qp(a[0],mod-2);return ;}
pol_inv((deg+1)>>1,a,b);
int sz=0;while((1<<sz)<=deg)sz++;sz++;
getrev(sz);int len=1<<sz;
for(int i=0;i<deg;i++)c[i]=a[i];
for(int i=deg;i<len;i++)c[i]=0;
ntt(c,len,1),ntt(b,len,1);
for(int i=0;i<len;i++)
b[i]=(2ll-c[i]*b[i]%mod+mod)%mod*b[i]%mod;
ntt(b,len,-1);
for(int i=deg;i<len;i++)b[i]=0;
}
int main()
{
int n;scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%lld",&a[i]);
pol_inv(n,a,b);
for(int i=0;i<n;i++)printf("%lld ",b[i]);puts("");
return 0;
}
/********************
********************/
P4238 【模板】多项式求逆 ntt的更多相关文章
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- luoguP4238 【模板】多项式求逆 NTT
Code: #include <bits/stdc++.h> #define N 1000010 #define mod 998244353 #define setIO(s) freope ...
- Luogu4512 【模板】多项式除法(多项式求逆+NTT)
http://blog.miskcoo.com/2015/05/polynomial-division 好神啊! 通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关. #include ...
- [模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
随机推荐
- OpenWRT路由器使用ipv6拨号上网教程
文章来源于群友,如有侵权,请联系我(aha971030@gmail.com)删除 原理介绍分析: 湖北E信地区可以使用ipv6拨号,好处是网络是上下对等不限速网络,也就是说,你的端口上限是多少,网上就 ...
- discuz 不能上传头像提示can not write to the data/tmp folder
# discuz 不能上传头像提示can not write to the data/tmp folder 解释: disucz头像上传不成功,提示data/tmp目录没有写入权限,这里的data/t ...
- 取消开机logo,改成代码刷屏
将开机logo改成开始时代码刷屏,这样就能很方便看到开始时的一些问题 首先 sudo chmod 666 /etc/default/grub 然后将 GRUB_CMDLINE_LINUX_DEFAUL ...
- Validation in jQuery
jquery.validate.js github地址 官方主页 doc demo jquery-validation-unobtrusive github地址 demo doc
- IDEA入门级使用教程----你怎么还在用eclipse?
http://blog.csdn.net/qq_31655965/article/details/52788374
- DIV+CSS+PS实现背景图的三层嵌套以及背景图的合并
传说中的“三层嵌套技术”. 一.背景图合并: div+css+ps合图相结合的技术:通过精确到1px的css设置,使用ps合成背景图片,特别是小图片合并,来完成页面效果. 首先讲讲三层 ...
- python实现八皇后问题
import random def judge(state, nextX): #判断是否和之前的皇后状态有冲突 nextY = len(state) for i in range(nextY): if ...
- HDU 5791 Two(LCS求公共子序列个数)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5791 题意: 给出两个序列,求这两个序列的公共子序列的总个数. 思路: 和LCS差不多,dp[i][ ...
- 【Ruby】【高级编程】正则
#[[正则]]=beginsub 和 gsub 及它们的替代变量 sub! 和 gsub! 是使用正则表达式时重要的字符串方法.所有这些方法都是使用正则表达式模式执行搜索与替换操作.sub 和 sub ...
- WARNING: Configuration 'compile' is obsolete and has been replaced with 'implementation' and 'api'.
点击报错信息中的app, 按照提示,修改compile 为 implementation 再次同步即可 结果