2015-10-07 20:44:42


题意问的是给了一颗树,然后又1000000次查询u,v,问不在树路径上的点的编号最小值,以1为根 建这颗树,然后在同一棵子树中的点子让就输出1 否则我们记录每个点从离1最近的那个点也就是1的孩子,到该点所经过的最小值,以及在他父亲到1的孩子,这段间和他不在同一条叉到上的最小值,还有就是他子树的最小值,然后遍历一遍,每次查询的时候搞一下就好了

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <string.h>
using namespace std;
const int maxn=;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return ;
while (c != '-' && (c<'' || c>'')) c = getchar();
sgn = (c == '-') ? - : ;
ret = (c == '-') ? : (c - '');
while (c = getchar(), c >= ''&&c <= '') ret = ret * + (c - '');
ret *= sgn;
return ;
}
template <class T>
inline void pt(T x) {
if (x <) {
putchar('-');
x = -x;
}
if (x>) pt(x / );
putchar(x % + '');
}
int fa[maxn],H[maxn],to[maxn*],nx[maxn*],numofE;
int upMIN[maxn],downMIN[maxn][],other[maxn];
int belong[maxn]; void init(int N){
numofE=;
memset(H,,sizeof(H));
}
void add(int u,int v)
{
numofE++;
to[numofE]=v;
nx[numofE]=H[u];
H[u]=numofE;
}
int Q[maxn];
void cmp(int O,int a){
if(a<downMIN[O][]){
downMIN[O][]=downMIN[O][];
downMIN[O][]=a;
}else if(a<downMIN[O][]){
downMIN[O][]=a;
}
}
void searchroot(int cur)
{
int rear=;
Q[rear++]=cur;
fa[cur]=;
belong[cur]=cur;
upMIN[cur]=cur;
for(int i=; i<rear; i++)
{
int x=Q[i];
other[x]=downMIN[x][]=downMIN[x][]=maxn;
for(int j=H[x]; j; j=nx[j])
{
int too=to[j];
if(too==fa[x])continue;
Q[rear++]=too;
fa[too]=x;
upMIN[too]=min(too,upMIN[x]);
belong[too]=cur;
}
}
for(int i=rear-; i>=; i--)
{
int x=Q[i];
for(int j=H[x]; j; j=nx[j])
{
int too=to[j];
if(too==fa[x])continue;
int a=min(too,downMIN[too][]);
cmp(x,a);
}
} for(int i=; i<rear; i++){
int x=Q[i];
int a=min(x,downMIN[x][]);
int f=fa[x];
if(a!=downMIN[f][]){
other[x]=min(other[f],downMIN[f][]);
}else{
other[x]=min(other[f],downMIN[f][]);
}
}
}
int A[],B[];
void jud(int a)
{
A[]=a;
for(int i=; i>=; i--)
if(A[i]>A[i+])swap(A[i],A[i+]);
else break;
}
void solve1(int a,int b)
{
for(int i=; i<; i++)
if(A[i]!=a&&A[i]!=b){
B[]=A[i];return ;
}
}
int jud2()
{
int v=B[];
for(int i=;i<;i++)
v=min(B[i],v);
return v;
} int main()
{
int N,q;
downMIN[][]=downMIN[][]=other[]=upMIN[]=maxn;
while(scanf("%d%d",&N,&q)==)
{
init(N);
for(int i=; i<N; i++)
{
int a,b;
rd(a);rd(b); add(a,b);add(b,a);
}
A[]=A[]=A[]=maxn;
for(int i=H[]; i; i=nx[i])
{
searchroot(to[i]);
jud(min(to[i],downMIN[to[i]][]));
}
int d=;
for(int i=; i<q; i++)
{
int a,b;
rd(a);rd(b);
a^=d;b^=d;
if(a==&&b==){
d=;
puts("");continue;
}
if(belong[a]==belong[b]){
d=;
puts("");continue;
}
if(a==||b==){
a=max(a,b);b=max(a,b);
}
solve1(upMIN[a],upMIN[b]);
B[]=other[a];B[]=other[b];
B[]=downMIN[a][];B[]=downMIN[b][];
d=jud2();
printf("%d\n",d);
}
} return ;
}

hdu1762 树的上的查询的更多相关文章

  1. 浅谈oracle树状结构层级查询之start with ....connect by prior、level及order by

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. 浅谈oracle树状结构层级查询测试数据

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  4. 在Bootstrap开发框架中使用bootstrapTable表格插件和jstree树形列表插件时候,对树列表条件和查询条件的处理

    在我Boostrap框架中,很多地方需要使用bootstrapTable表格插件和jstree树形列表插件来共同构建一个比较常见的查询界面,bootstrapTable表格插件主要用来实现数据的分页和 ...

  5. 南昌网络赛 Distance on the tree 主席树+树剖 (给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数。)

    https://nanti.jisuanke.com/t/38229 题目: 给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数. #include <bits/stdc++.h ...

  6. HDU.1556 Color the ball (线段树 区间更新 单点查询)

    HDU.1556 Color the ball (线段树 区间更新 单点查询) 题意分析 注意一下pushdown 和 pushup 模板类的题还真不能自己套啊,手写一遍才行 代码总览 #includ ...

  7. 170406、用uid分库,uname(用户名)上的查询怎么办

    [缘起] 用户中心是几乎每一个公司必备的基础服务,用户注册.登录.信息查询与修改都离不开用户中心. 当数据量越来越大时,需要多用户中心进行水平切分.最常见的水平切分方式,按照uid取模分库: 通过ui ...

  8. 【POJ 2777】 Count Color(线段树区间更新与查询)

    [POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4094 ...

  9. Oracle11gR2 sqlplus中可以执行上键查询backspace删除

    1.1 sqlplus中可以执行上键查询backspace删除 1.1.1 上键查询 方法1: 安装源-导入key-安装rpm包-进入配置文件修改参数 rpm -ivh http://download ...

随机推荐

  1. 《linux 字符处理》- grep/sort/uniq/tr/paste

    一:基本 字符处理主要是文本的搜索和处理. 搜索也主要使用到了 管道 作为媒介. 二: grep 搜索文本 基本语法 * grep [-incv] ’文本’ 文件 * i 不区分大小写 * c 匹配行 ...

  2. django2.0内置分页

    #导入分页器from django.core.paginator import Paginator 1视图逻辑 #读取数据库 res = Product.objects.all() #建立分页器对象 ...

  3. Mybatis中dao接口和mapper 的加载过程

    这里考虑的是mybatis和spring整合的场景 1.在系统启动的时候,会去执行配置文件中有关扫描mybatis接口的配置:通过MapperScannerConfigurer扫描接口生成spring ...

  4. Java体系基本概念

    JVM:Java虚拟机 JRE:(Java Runtime Environment)Java程序允许,测试,传输应用程序的环境和平台 包括 jvm ,java 核心类库和支持的文件,但不包含开发工具J ...

  5. (4.22)sql server视图/索引视图概念

    (4.22)sql server视图 关键词:sql server视图.索引视图 SQL Server视图是由SQL语句组成的逻辑数据库对象.它也可以称为由SQL语句组成的虚拟表,该SQL语句可能包含 ...

  6. linux 查看磁盘读写:iostat

    iostat命令用来查看磁盘IO的读写情况,用法如下: 安装iostat命令 [root@mysql ~]# yum install -y sysstat [root@mysql ~]# iostat ...

  7. Java基础知识(JAVA基本数据类型包装类)

    基本数据类型的包装类 为什么需要包装类? Java并不是纯面向对象的语言.Java语言是一个面向对象的语言,但是Java的基本数据类型却不是面向对象的.但是我们在实际使用中经常需要将基本数据转化成对象 ...

  8. ABPIAbpSession

    AbpSession定义了几个关键属性: UserId:当前用户的Id或空(如果没有当前用户),如果调用需要授权的代码,它就不能为空. TenantId:当前租户的Id或空(如果没有当前租户:尚未登录 ...

  9. MySQL数据库之part1

    一.初始数据库 链接:http://www.cnblogs.com/linhaifeng/articles/7126847.html 一.MySQL介绍 1.MySQL是什么 MySQL是一个关系型数 ...

  10. centos7下git服务器端搭建

    git的安装: yum 源仓库里的 Git 版本更新不及时,最新版本的 Git 是 1.8.3.1,但是官方最新版本已经到了 2.9.2.想要安装最新版本的的 Git,只能下载源码进行安装. 1. 查 ...