2015-10-07 20:44:42


题意问的是给了一颗树,然后又1000000次查询u,v,问不在树路径上的点的编号最小值,以1为根 建这颗树,然后在同一棵子树中的点子让就输出1 否则我们记录每个点从离1最近的那个点也就是1的孩子,到该点所经过的最小值,以及在他父亲到1的孩子,这段间和他不在同一条叉到上的最小值,还有就是他子树的最小值,然后遍历一遍,每次查询的时候搞一下就好了

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <string.h>
using namespace std;
const int maxn=;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return ;
while (c != '-' && (c<'' || c>'')) c = getchar();
sgn = (c == '-') ? - : ;
ret = (c == '-') ? : (c - '');
while (c = getchar(), c >= ''&&c <= '') ret = ret * + (c - '');
ret *= sgn;
return ;
}
template <class T>
inline void pt(T x) {
if (x <) {
putchar('-');
x = -x;
}
if (x>) pt(x / );
putchar(x % + '');
}
int fa[maxn],H[maxn],to[maxn*],nx[maxn*],numofE;
int upMIN[maxn],downMIN[maxn][],other[maxn];
int belong[maxn]; void init(int N){
numofE=;
memset(H,,sizeof(H));
}
void add(int u,int v)
{
numofE++;
to[numofE]=v;
nx[numofE]=H[u];
H[u]=numofE;
}
int Q[maxn];
void cmp(int O,int a){
if(a<downMIN[O][]){
downMIN[O][]=downMIN[O][];
downMIN[O][]=a;
}else if(a<downMIN[O][]){
downMIN[O][]=a;
}
}
void searchroot(int cur)
{
int rear=;
Q[rear++]=cur;
fa[cur]=;
belong[cur]=cur;
upMIN[cur]=cur;
for(int i=; i<rear; i++)
{
int x=Q[i];
other[x]=downMIN[x][]=downMIN[x][]=maxn;
for(int j=H[x]; j; j=nx[j])
{
int too=to[j];
if(too==fa[x])continue;
Q[rear++]=too;
fa[too]=x;
upMIN[too]=min(too,upMIN[x]);
belong[too]=cur;
}
}
for(int i=rear-; i>=; i--)
{
int x=Q[i];
for(int j=H[x]; j; j=nx[j])
{
int too=to[j];
if(too==fa[x])continue;
int a=min(too,downMIN[too][]);
cmp(x,a);
}
} for(int i=; i<rear; i++){
int x=Q[i];
int a=min(x,downMIN[x][]);
int f=fa[x];
if(a!=downMIN[f][]){
other[x]=min(other[f],downMIN[f][]);
}else{
other[x]=min(other[f],downMIN[f][]);
}
}
}
int A[],B[];
void jud(int a)
{
A[]=a;
for(int i=; i>=; i--)
if(A[i]>A[i+])swap(A[i],A[i+]);
else break;
}
void solve1(int a,int b)
{
for(int i=; i<; i++)
if(A[i]!=a&&A[i]!=b){
B[]=A[i];return ;
}
}
int jud2()
{
int v=B[];
for(int i=;i<;i++)
v=min(B[i],v);
return v;
} int main()
{
int N,q;
downMIN[][]=downMIN[][]=other[]=upMIN[]=maxn;
while(scanf("%d%d",&N,&q)==)
{
init(N);
for(int i=; i<N; i++)
{
int a,b;
rd(a);rd(b); add(a,b);add(b,a);
}
A[]=A[]=A[]=maxn;
for(int i=H[]; i; i=nx[i])
{
searchroot(to[i]);
jud(min(to[i],downMIN[to[i]][]));
}
int d=;
for(int i=; i<q; i++)
{
int a,b;
rd(a);rd(b);
a^=d;b^=d;
if(a==&&b==){
d=;
puts("");continue;
}
if(belong[a]==belong[b]){
d=;
puts("");continue;
}
if(a==||b==){
a=max(a,b);b=max(a,b);
}
solve1(upMIN[a],upMIN[b]);
B[]=other[a];B[]=other[b];
B[]=downMIN[a][];B[]=downMIN[b][];
d=jud2();
printf("%d\n",d);
}
} return ;
}

hdu1762 树的上的查询的更多相关文章

  1. 浅谈oracle树状结构层级查询之start with ....connect by prior、level及order by

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. 浅谈oracle树状结构层级查询测试数据

    浅谈oracle树状结构层级查询 oracle树状结构查询即层次递归查询,是sql语句经常用到的,在实际开发中组织结构实现及其层次化实现功能也是经常遇到的,虽然我是一个java程序开发者,我一直觉得只 ...

  4. 在Bootstrap开发框架中使用bootstrapTable表格插件和jstree树形列表插件时候,对树列表条件和查询条件的处理

    在我Boostrap框架中,很多地方需要使用bootstrapTable表格插件和jstree树形列表插件来共同构建一个比较常见的查询界面,bootstrapTable表格插件主要用来实现数据的分页和 ...

  5. 南昌网络赛 Distance on the tree 主席树+树剖 (给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数。)

    https://nanti.jisuanke.com/t/38229 题目: 给一颗树,m次查询ui->vi这条链中边权小于等于ki的边数. #include <bits/stdc++.h ...

  6. HDU.1556 Color the ball (线段树 区间更新 单点查询)

    HDU.1556 Color the ball (线段树 区间更新 单点查询) 题意分析 注意一下pushdown 和 pushup 模板类的题还真不能自己套啊,手写一遍才行 代码总览 #includ ...

  7. 170406、用uid分库,uname(用户名)上的查询怎么办

    [缘起] 用户中心是几乎每一个公司必备的基础服务,用户注册.登录.信息查询与修改都离不开用户中心. 当数据量越来越大时,需要多用户中心进行水平切分.最常见的水平切分方式,按照uid取模分库: 通过ui ...

  8. 【POJ 2777】 Count Color(线段树区间更新与查询)

    [POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4094 ...

  9. Oracle11gR2 sqlplus中可以执行上键查询backspace删除

    1.1 sqlplus中可以执行上键查询backspace删除 1.1.1 上键查询 方法1: 安装源-导入key-安装rpm包-进入配置文件修改参数 rpm -ivh http://download ...

随机推荐

  1. day1_jmeter接口测试

    一.Jmeter-http接口脚本: 步骤: 1.添加线程组 2.添加http请求 3.在http请求中写入接口url.路径.请求方式.参数 4.添加查看结果树 5.调用接口.查看返回值 二.Jmet ...

  2. Delphi 打开网址

    1. 通过iexplore.exe打开:ShellExecute(0, 'open', 'iexplore.exe', PChar('http://www.100xuekao.com'), '', S ...

  3. 《Mysql DML语句》

    1:DISTINCT 用于去重,但是需要注意的是,它是用于所有列的,也就是说,除非指定的列全部相同,否则所有的行都会被检索出来. 2:ORDER BY 用于排序,但是应该注意的是,它因该是 SELEC ...

  4. 【Python基础】random 的高级玩法

    random 模块的高级玩法 1.python 随机产生姓名 方式一: import random xing = [ '赵', '钱', '孙', '李', '周', '吴', '郑', '王', ' ...

  5. VB改写C#

    1.VB的Val()函数 先从程序集中引入Microsoft.VisualBasic命名空间.不过,即便是引入了Microsoft.VisualBasic命名空间,还是不能直接使用像Val()这样的函 ...

  6. Ubuntu14.04 LTS 安装Chrome浏览器(转)

    add zhj: 亲测过,可以,原来不用FQ就可以下载,有点意外 原文:http://www.jianshu.com/p/8220578d0b15 1.打开终端(ctrl + alt + t),下载6 ...

  7. 对vue生命周期的理解

    总共分为8个阶段,创建前/后,载入前/后,更新前/后,销毁前/后: 创建前/后:在beforeCreated阶段,vue实例的挂载元素$el和数据对象data都为undefined,还未初始化.在cr ...

  8. SQL SERVER 基于数据库镜像的主从同步(数据库镜像实践汇总)

    SQL SERVER 基于数据库镜像的主从同步 Author:chaoqun.guo    createtime:2019-03-26 目录 SQL SERVER 基于数据库镜像的主从同步... 1 ...

  9. dedecms站内搜索页面调用最新文章

    在页面中调用最新文章列表可以使新发布的文章更快被收录,如何在dedecms站内搜索页面调用最新文章呢? 1.登陆系统后台,进入“模板——模板管理——自定义宏标记”,点击“智能标记向导”进入智能标记生成 ...

  10. staticmethod()静态方法和classmethod类方法都是装饰器

    1.staticmethod()静态方法 使用@staticmethod目的是为了增加可读性,不需要参数self(不强制要求传递参数) 的方法都可以加上@staticmethod增加可读性 静态方法无 ...