Spark中组件Mllib的学习之基础概念篇 
1、解释 
分层抽样的概念就不讲了,具体的操作: 
RDD有个操作可以直接进行抽样:sampleByKey和sample等,这里主要介绍这两个 
(1)将字符串长度为2划分为层2,字符串长度为3划分为层1,对层1和层2按不同的概率进行抽样 
数据

aa
bb
cc
dd
ee
aaa
bbb
ccc
ddd
eee

比如: 
val fractions: Map[Int, Double] = List((1, 0.2), (2, 0.8)).toMap //设定抽样格式 
sampleByKey(withReplacement = false, fractions, 0) 
fractions表示在层1抽0.2,在层2中抽0.8 
withReplacement false表示不重复抽样 
0表示随机的seed

源码:

 /**
* Return a subset of this RDD sampled by key (via stratified sampling).
*
* Create a sample of this RDD using variable sampling rates for different keys as specified by
* `fractions`, a key to sampling rate map, via simple random sampling with one pass over the
* RDD, to produce a sample of size that's approximately equal to the sum of
* math.ceil(numItems * samplingRate) over all key values.
*
* @param withReplacement whether to sample with or without replacement
* @param fractions map of specific keys to sampling rates
* @param seed seed for the random number generator
* @return RDD containing the sampled subset
*/
def sampleByKey(withReplacement: Boolean,
fractions: Map[K, Double],
seed: Long = Utils.random.nextLong): RDD[(K, V)] = self.withScope { require(fractions.values.forall(v => v >= 0.0), "Negative sampling rates.") val samplingFunc = if (withReplacement) {
StratifiedSamplingUtils.getPoissonSamplingFunction(self, fractions, false, seed)
} else {
StratifiedSamplingUtils.getBernoulliSamplingFunction(self, fractions, false, seed)
}
self.mapPartitionsWithIndex(samplingFunc, preservesPartitioning = true)
}

2、代码:

import org.apache.spark.{SparkConf, SparkContext}

object StratifiedSamplingLearning {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local[4]").setAppName(this.getClass.getSimpleName.filter(!_.equals('$')))
val sc = new SparkContext(conf)
println("First:")
val data = sc.textFile("D:\\TestData\\StratifiedSampling.txt") //读取数
.map(row => {
//开始处理
if (row.length == ) //判断字符数
(row, ) //建立对应map
else (row, ) //建立对应map
}).map(each => (each._2, each._1))
data.foreach(println) println("sampleByKey:")
val fractions: Map[Int, Double] = List((, 0.2), (, 0.8)).toMap //设定抽样格式
val approxSample = data.sampleByKey(withReplacement = false, fractions, ) //计算抽样样本
approxSample.foreach(println) println("Second:")
val randRDD = sc.parallelize(List((, "cat"), (, "mouse"), (, "cup"), (, "book"), (, "tv"), (, "screen"), (, "heater")))
val sampleMap = List((, 0.4), (, 0.8)).toMap
val sample2 = randRDD.sampleByKey(false, sampleMap, ).collect
sample2.foreach(println) println("Third:")
val a = sc.parallelize( to , )
val b = a.sample(true, 0.8, )
val c = a.sample(false, 0.8, )
println("RDD a : " + a.collect().mkString(" , "))
println("RDD b : " + b.collect().mkString(" , "))
println("RDD c : " + c.collect().mkString(" , "))
sc.stop
}
}

3、结果:

First:
(,aa)
(,bbb)
(,bb)
(,ccc)
(,cc)
(,ddd)
(,dd)
(,eee)
(,ee)
(,aaa)
sampleByKey:
(,aa)
(,bb)
(,cc)
(,ee)
Second:
(,cat)
(,mouse)
(,book)
(,screen)
(,heater)
Third:
RDD a : , , , , , , , , , , , , , , , , , , ,
RDD b : , , , , , , ,
RDD c : , , , , , , , , , , , , , ,

Spark Mllib之分层抽样的更多相关文章

  1. Spark Mllib里的分层抽样(使用map作为分层抽样的数据标记)

    不多说,直接上干货! 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mllib数理统计

  2. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

  3. spark MLLib的基础统计部分学习

    参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/s ...

  4. spark MLlib BasicStatistics 统计学基础

    一, jar依赖,jsc创建. package ML.BasicStatistics; import com.google.common.collect.Lists; import org.apach ...

  5. Spark MLlib 机器学习

    本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...

  6. Spark MLlib - LFW

    val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first pri ...

  7. Spark MLlib 之 Basic Statistics

    Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法 ...

  8. Spark MLlib Data Type

    MLlib 支持存放在单机上的本地向量和矩阵,也支持通过多个RDD实现的分布式矩阵.因此MLlib的数据类型主要分为两大类:一个是本地单机向量:另一个是分布式矩阵.下面分别介绍一下这两大类都有哪些类型 ...

  9. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

随机推荐

  1. ubuntu-16.04更好软件源

    author: headsen chen date:2019-03-06  14:01:07 1,修改软件源文件成如下的清华大学的源(亲测可用) root@ubuntu:/var/lib/apt/li ...

  2. word2016怎么让目录索引显示在左边?

    视图里面 勾选导航窗格即可 前提是你分级分好

  3. Spark LogisticRegression 逻辑回归之简介

    LogisticRegression简介

  4. E - Coin Game

    After hh has learned how to play Nim game, he begins to try another coin game which seems much easie ...

  5. D - Pagodas

    n pagodas were standing erect in Hong Jue Si between the Niushou Mountain and the Yuntai Mountain, l ...

  6. ssh登录慢解决办法

    这两天ssh登录局域网的一台服务器非常慢,严重影响工作效率,怎么办?查了一下网上的解决办法,总结一下: 使用命令ssh -v xxx@x.x.x.x 可以看到debug信息,找到问题出在哪: debu ...

  7. HashMap TreeMap ConcurrentHashMap

    1 HashMap java se 1.6 1.1 父类 java.lang.Object 继承者 java.util.AbstractMap<K,V> 继承者 java.util.Has ...

  8. TOP100summit2017:网易测试总监钱蓓蕾——新时代测试正走向精英化、自动化、智能化

    壹佰案例:钱蓓蕾老师您好,很荣幸邀请到您成为第六届壹佰案例峰会测试专场的联席主席.您从事测试工作11年了,您觉得最近几年测试工作有什么趋势上的变化么? 钱蓓蕾:测试行业近几年变化挺大的,正逐渐向精英化 ...

  9. .NET Core开发日志——视图与页面

    当一个Action完成它的任务后,通常需要返回一个实现IActionResult的对象,而最常见的就是View或者ViewResult,所谓的视图对象.那么视图与最终所看到的页面之间的联系又是怎样形成 ...

  10. [No000016A]CSS常用三种选择器

    1.HTML Tag p{color:red;} 2.id #myid{color:red;} 3.class .myclass{color:red;} CSS常用文本样式属性 color font- ...