luogu P1641 [SCOI2010]生成字符串
代码极短
\(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1,后面可以多放一个0,所以\(k\)加1,即$$f_{i+1,j,k-1}+=f_{i,j,k}$$$$f_{i+1,j+1,k+1}+=f_{i,j,k}$$
这样子还是不好优化,,,
我们可以把问题抽象化,把这个放字符过程转化为从平面直角坐标系的\((0,0)\)走到\((n,m)\),其中放1相当于横坐标+1,放0相当于纵坐标+1,因为要求任何一个前缀中1个数大于等于0个数,也就是走的过程中不能经过\((x,x+1)\),也就是不能碰到直线\(y=x+1\).这是个经典问题,答案为\(\binom{n+m}{m}-\binom{n+m}{m-1}\).至于为什么,这里有一道类似的题
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5)
using namespace std;
const int N=1000000+10,mod=20100403;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL n,m,jc[N<<1];
il LL ksm(LL a,LL b)
{
LL an=1;
while(b)
{
if(b&1) an=(an*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return an;
}
int main()
{
n=rd(),m=rd();
jc[0]=1;
for(int i=1;i<=n+m;i++) jc[i]=(jc[i-1]*i)%mod;
printf("%lld\n",((jc[n+m]*ksm(jc[n],mod-2)%mod*ksm(jc[m],mod-2)%mod-jc[n+m]*ksm(jc[n+1],mod-2)%mod*ksm(jc[m-1],mod-2)%mod)%mod+mod)%mod);
return 0;
}
luogu P1641 [SCOI2010]生成字符串的更多相关文章
- Luogu P1641 [SCOI2010]生成字符串 组合数学
神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- 【洛谷】P1641 [SCOI2010]生成字符串(思维+组合+逆元)
题目 传送门:QWQ 分析 不想画图. https://www.luogu.org/problemnew/solution/P1641 好神仙的题啊. 代码 // luogu-judger-enabl ...
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- 洛谷 P1641 [SCOI2010]生成字符串
洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...
- Luogu 1641 [SCOI2010]生成字符串
结果和dp没有一点关系…… 30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$. 1 ...
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
随机推荐
- maven手动添加jar包到本地仓库
推荐几个好的 Maven 常用仓库网址:http://mvnrepository.com/http://search.maven.org/ Maven 安装 JAR 包的命令是: mvn instal ...
- python中字典和json的区别
python中,json和dict非常类似,都是key-value的形式,而且json.dict也可以非常方便的通过dumps.loads互转 定义 python中,json和dict非常类似,都是k ...
- shell特殊变量的使用
$0 当前脚本名$# 传递给脚本的参数个数$1 第一个参数,依次类推$*,$@ 所有参数 $? 上一条命令的执行返回结果$$ 当前shell进程ID $PPID 父进程ID 下面的shell ...
- 冬令营前的一些计划&记录
冬令营前的一些计划&记录 计划 yyb发现自己很多以前学过的东西完完全全不记得了,所以在接下来的时间里可能会留下多篇复习向的博客,当然也可能因为觉得没有必要复习而到处乱做题. 现在先大概归类一 ...
- rt-thread learning notes
rt-thread learning notes 2018-01-15 > 001 具有相同优先级的线程,每个线程的时间片大小都可以在初始化或创建该线程时指定 rt_thread_t rt_th ...
- 【转】cJSON 使用笔记
缘 起 最近在stm32f103上做一个智能家居的项目,其中选择的实时操作系统是 rt_thread OS v1.2.2稳定版本,其中涉及到C和java(android)端数据 ...
- A1101. Quick Sort
There is a classical process named partition in the famous quick sort algorithm. In this process we ...
- poj 3320(尺取法)
传送门:Problem 3320 参考资料: [1]:挑战程序设计竞赛 题意: 一本书有 P 页,每页都有个知识点a[i],知识点可能重复,求包含所有知识点的最少的页数. 题解: 相关说明: 设以a[ ...
- getComponent()与getSource()
Component[] items = 父控件.getComponents(); 获取父控件里的控件,返回Component类的数组.如panel中的许多buttone.getSource() 获取发 ...
- 第1课:SQL注入原理深度解析
对于Web应用来说,注射式攻击由来已久,攻击方式也五花八门,常见的攻击方式有SQL注射.命令注射以及新近才出现的XPath注射等等.本文将以SQL注射为例,在源码级对其攻击原理进行深入的讲解. 一.注 ...