luogu P1641 [SCOI2010]生成字符串
代码极短
\(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1,后面可以多放一个0,所以\(k\)加1,即$$f_{i+1,j,k-1}+=f_{i,j,k}$$$$f_{i+1,j+1,k+1}+=f_{i,j,k}$$
这样子还是不好优化,,,
我们可以把问题抽象化,把这个放字符过程转化为从平面直角坐标系的\((0,0)\)走到\((n,m)\),其中放1相当于横坐标+1,放0相当于纵坐标+1,因为要求任何一个前缀中1个数大于等于0个数,也就是走的过程中不能经过\((x,x+1)\),也就是不能碰到直线\(y=x+1\).这是个经典问题,答案为\(\binom{n+m}{m}-\binom{n+m}{m-1}\).至于为什么,这里有一道类似的题
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5)
using namespace std;
const int N=1000000+10,mod=20100403;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL n,m,jc[N<<1];
il LL ksm(LL a,LL b)
{
LL an=1;
while(b)
{
if(b&1) an=(an*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return an;
}
int main()
{
n=rd(),m=rd();
jc[0]=1;
for(int i=1;i<=n+m;i++) jc[i]=(jc[i-1]*i)%mod;
printf("%lld\n",((jc[n+m]*ksm(jc[n],mod-2)%mod*ksm(jc[m],mod-2)%mod-jc[n+m]*ksm(jc[n+1],mod-2)%mod*ksm(jc[m-1],mod-2)%mod)%mod+mod)%mod);
return 0;
}
luogu P1641 [SCOI2010]生成字符串的更多相关文章
- Luogu P1641 [SCOI2010]生成字符串 组合数学
神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...
- P1641 [SCOI2010]生成字符串
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- 【洛谷】P1641 [SCOI2010]生成字符串(思维+组合+逆元)
题目 传送门:QWQ 分析 不想画图. https://www.luogu.org/problemnew/solution/P1641 好神仙的题啊. 代码 // luogu-judger-enabl ...
- Luogu 1641[SCOI2010]生成字符串 - 卡特兰数
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...
- 洛谷 P1641 [SCOI2010]生成字符串
洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...
- Luogu 1641 [SCOI2010]生成字符串
结果和dp没有一点关系…… 30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$. 1 ...
- [SCOI2010]生成字符串 题解(卡特兰数的扩展)
[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...
- [SCOI2010]生成字符串
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...
随机推荐
- codeforces620A
Professor GukiZ's Robot CodeForces - 620A 机器人很好玩 一开始在(x1,y1) 最后在(x2,y2) 每秒钟内横坐标最多变化1(也可以不变化)纵坐标也是 问最 ...
- 自学Linux Shell8.2-linux逻辑卷LVM管理
点击返回 自学Linux命令行与Shell脚本之路 8.2-linux逻辑卷LVM管理 Linux逻辑卷管理器软件包用来通过将另外一个硬盘上的分区加入已有文件系统,动态地添加存储空间. 1. 逻辑卷L ...
- 使用FreeRTOS在SD卡驱动使用非系统延时导致上电重启不工作的情况
一.问题描述在一个使用FreeRTOS的工程中,只做了SD卡的驱动,由于RTOS使用了Systick,故非系统延时函数使用的是 DWT中的时钟周期(CYCCNT)计数功能,但是在SD卡驱动中使用了这个 ...
- 【AGC016E】Poor Turkeys
Description 有\(n\)(\(1 \le n \le 400\))只鸡,接下来按顺序进行\(m\)(\(1 \le m \le 10^5\))次操作.每次操作涉及两只鸡,如果都存在则随意拿 ...
- 洛谷 P4151 [WC2011]最大XOR和路径 解题报告
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...
- spring-mvc springboot 使用MockMvc对controller进行测试
网上基本都是参考官方的使用方式,使用了import static,个人感觉这种方式特别不好,代码提示性不友好.所以在此进行说明,也方便自己以后使用. 1. 引入spring-test相关jar包,sp ...
- 【洛谷P1072】Hankson 的趣味题
题目大意:给定四个数字 a,b,c,d,求满足 \(gcd(a,x)=b,lcm(c,x)=d\) 的 x 的个数. 题解: 解法1:根据 lcm 的性质,x 一定为 d 的约数.因此,直接枚举 d ...
- (转)Maven之自定义archetype生成项目骨架
背景:最近在开发一个项目的基础构件,在以后项目的开发过程中可以直接使用该构件快速的生成项目骨架进行开发. 摘要:使用过Maven的人都知道maven中有许多功能都是通过插件来提供的,今天我们来说一下其 ...
- 移动UI布局设计原则(一)
学习笔记1 Learning notes one 移动UI布局设计的布局原则 Layout Principles of Mobile UI Layout Design 移动UI视觉交互设计法则 Des ...
- hdu 3966(树链剖分+线段树区间更新)
传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...