数学基础
 
Part 1.  高精度计算
 

 
Part 2.  模意义下的运算
           
        mod 
对一个数取模,其实就是取余数
 
注意:
•   无除法运算
•   满足基本的交换律、分配率、结合律
•   对中间结果取模不影响最终答案
 

 
Part 3.  快速幂
 

 
Part 4.  费马小定理与GCD&LCM

 

 
Part 5.  素数与筛法
 

 
Part 6.  欧拉函数
 

 
 
 
 行列式
 

行列式计算:

1.利用高斯消元将原矩阵变为对角矩阵
2.将对角线上的值连乘得到行列式
 

逆元的定义:
     若矩阵B*A=I 则称B为A的左逆元
     若矩阵A*B=I 则称B为A的左逆元
 
有逆元的前提:
     矩阵行列式不为0
 
 LH的矩阵求逆板子:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long
#define N 405
using namespace std;
const int mod=1e9+7; template<class T>inline void rd(T &x){
x=0; short f=1; char c=getchar();
while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
x*=f;
} int n,m;
int f[N][N<<1],r,ans; inline int qpow(int x,int k){
int ret=1;
while(k){
if(k&1) ret=1LL*ret*x%mod;
x=1LL*x*x%mod; k>>=1;
} return ret;
} inline void Gauss(){
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++)
if(f[j][i]){
if(j!=i) for(int k=1;k<=m;k++) swap(f[i][k],f[j][k]);
break;
}
if(!f[i][i]){puts("No Solution");exit(0);}
r=qpow(f[i][i],mod-2);
for(int j=i;j<=m;j++) f[i][j]=1LL*f[i][j]*r%mod;
for(int j=1;j<=n;j++)
if(j!=i){
r=f[j][i];
for(int k=i;k<=m;k++)
f[j][k]=(f[j][k]-1LL*r*f[i][k]%mod+mod)%mod;
}
}
for(int i=1;i<=n;i++){
for(int j=n+1;j<=m;j++) printf("%d ",f[i][j]);
puts("");
} return;
} int main(){
rd(n); m=n<<1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) rd(f[i][j]);
f[i][n+i]=1;
}
Gauss();
return 0;
}
 

 
扩充知识
然而后面这些知识点LH貌似没讲
矩阵树定理
 
一个图的邻接矩阵G:对于无向图的边(u,v),G[u][v]++,G[v][u]++
一个图的度数矩阵D:对于无向图的边(u,v),D[u][u]++,D[v][v]++
而通过这两个矩阵就可以构造出图G的基尔霍夫矩阵:C=D-G.
 
 Matrix Tree定理:
      将图G的基尔霍夫矩阵去掉第i行和第i列(i可以取任意值,可以证明所得到的结果相同),得到(n-1)*(n-1)的矩阵,对这个矩阵进行行列式的值求解,abs(det(A))即为图G的生成树个数。
 
 
 
 
有向图 - 矩阵树定理
 
树形图:以i点为根节点的树形图有(n-1)条边,从i节点出发可以到达其他所有(n-1)个节点.
 
定义: 有向图的邻接矩阵G:对于有向图的边(u,v),G[u][v]++.
            有向图的度数矩阵D:对于有向图的边(u,v),D[v][v]++.
 
尤其需要注意的是:有向图的度数矩阵指的是一个点的入度,而不是出度。
而有向图的基尔霍夫矩阵的构造方式是一模一样的:C=D-G.
 
有向图Matrix Tree定理:
        将有向图G的基尔霍夫矩阵去掉第i行和第i列,得到(n-1)*(n-1)的矩阵,对这个矩阵进行行列式的值求解,abs(det(A))就是以i为根的树形图的个数。
 
 
 

拓展:k^2logn求常系数线性递推方程

• f(n) = a0 + a1*f(n-1) + … + ak*f(n-k)
• 给出 f(1) ~ f(k), 求 f(n) % p
 
 

 
 
POJ 3735

 
 
 
 题解:

 
 
 
 
 
 
 
 
 

清明 DAY 1的更多相关文章

  1. 清明梦超能力者黄YY(idx数组)

    清明梦超能力者黄YY https://www.nowcoder.com/acm/contest/206/I 题目描述 黄YY是一个清明梦超能力者,同时也是一个记忆大师.他能够轻松控制自己在梦中的一切, ...

  2. 清明|TcaplusDB持续为您保驾护航

    清明将至,又到一年休闲踏青,祭拜祖先的时机. 清明假期期间,TcaplusDB不停歇,我们将一如既往地守护您的数据,继续做您最坚实的后盾.  在未来,TcaplusDB还将以国产键值型数据库领航者的身 ...

  3. 清明培训 清北学堂 DAY2

    今天是钟皓曦老师的讲授~~ 总结了一下今天的内容: 数论!!! 1.整除性 2.质数 定义: 性质:  3.整数分解定理——算数基本定理 证明: 存在性: 设N是最小不满足唯一分解定理的整数 (1)  ...

  4. 清明培训 清北学堂 DAY1

    今天是李昊老师的讲授~~ 总结了一下今天的内容: 1.高精度算法 (1)   高精度加法 思路:模拟竖式运算 注意:进位 优化:压位 程序代码: #include<iostream>#in ...

  5. 2019清明期间qbxt培训qaq

    4.4下午:矩阵qwq part1矩阵乘法: 概念: 一个m×p的矩阵A 乘 一个p×n的矩阵B 得到一个矩阵一个m×n的矩阵AB 其中: 矩阵乘法满足结合律.分配率,不满足交换律 矩阵乘法—solu ...

  6. 2019清明期间qbxt培训qwq

    4.4上午:数学基础 (qwq整成word和cpp了,它居然不能直接把文档附上来) part 1:高精度运算 高精加和高精减就不说了,之前写过博客了qwq,讲一讲高精乘和高精除吧. 1.高精度乘法(不 ...

  7. 清明 DAY2

    数论 数论是研究整数性质的东西 也就是 lim   π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr      b= ...

  8. 一个讲课截屏 清明DAY2

    灰常混乱 放弃吧........ 不断做平方差公式 到i时,前面已经求出之前数字的逆元了 r是一个比i小的数 第四行×i,r 的逆元 BSGS 暴力枚举枚举到Φ(m)个

  9. 清明小长假之VUE.JS学习测试码

    我们放了四天假,刚好借此机会,系统的了解一下VUE.JS. <!DOCTYPE html> <html> <head> <meta charset=" ...

随机推荐

  1. 2 jmeter常用功能介绍-测试计划、线程组

    1.测试计划测试用来描述一个性能测试,所有内容都是基于这个测试计划的. (1)User Defined Variables:设置用户全局变量.一般添加一些系统常用的配置.如果测试过程中想切换环境,切换 ...

  2. rest_framework的认证系统

    1.认证模块 必须用户登录之后才能访问所有图书,才能修改图片,才能查询单个图书 2.怎么使用 其实本质上就是携带token字符串,然后后台拿到数据再取数据库进行校验,看是否有这个用户 先手写一个认证模 ...

  3. 使用awk处理文本

    http://blog.wuxu92.com/using-awk/ 在Liux下我们经常需要对一些文本文档做一些处理,尤其像从日志里提取一些数据,这是我们一般会用awk工具和sed工具去实现需求,这里 ...

  4. spring的面向切面实现的两种方式

    面向切面:主要应用在日志记录方面.实现业务与日志记录分离开发. spring面向切面有两种实现方式:1.注解 2.xml配置. 1.注解实现如下: (1)配置如下: <?xml version= ...

  5. 【LeetCode每天一题】Valid Parentheses(有效的括弧)

    Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...

  6. SpringMVC的Model ModeMap ModelAndView @ModelAttribute @SessionAttribute区分

    Spring MVC整理系列(05)————Spring MVC配置解析及整合SpriSpring MVC之@ModelAttribute.@SessionAttributes以及Model的使用介绍 ...

  7. jenkins 常用插件和配置项介绍和使用

    jenkins 上搜索不到的插件可以在如下地址下载: http://updates.jenkins-ci.org/download/plugins/ 1.Notification Plugin 介绍: ...

  8. .yml文件格式

    http://yaml.org/ YAML: YAML Ain't Markup Language What It Is: YAML is a human friendly data serializ ...

  9. Entity Framework(Fluent API)

    一.概述 Fluent API 可以理解为一种从POCO到数据库的映射约定,包括字段长度,类型,主外键等等,在EF Code First进行开发时候经常用到. 1.主键 modelBuilder.En ...

  10. android 调用webview控件,为逆向h5app做准备

    activity对应layout文件加入: <WebView android:id="@+id/main_web" android:layout_width="ma ...