清明 DAY 1

行列式计算:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long
#define N 405
using namespace std;
const int mod=1e9+7; template<class T>inline void rd(T &x){
x=0; short f=1; char c=getchar();
while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar();
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
x*=f;
} int n,m;
int f[N][N<<1],r,ans; inline int qpow(int x,int k){
int ret=1;
while(k){
if(k&1) ret=1LL*ret*x%mod;
x=1LL*x*x%mod; k>>=1;
} return ret;
} inline void Gauss(){
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++)
if(f[j][i]){
if(j!=i) for(int k=1;k<=m;k++) swap(f[i][k],f[j][k]);
break;
}
if(!f[i][i]){puts("No Solution");exit(0);}
r=qpow(f[i][i],mod-2);
for(int j=i;j<=m;j++) f[i][j]=1LL*f[i][j]*r%mod;
for(int j=1;j<=n;j++)
if(j!=i){
r=f[j][i];
for(int k=i;k<=m;k++)
f[j][k]=(f[j][k]-1LL*r*f[i][k]%mod+mod)%mod;
}
}
for(int i=1;i<=n;i++){
for(int j=n+1;j<=m;j++) printf("%d ",f[i][j]);
puts("");
} return;
} int main(){
rd(n); m=n<<1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) rd(f[i][j]);
f[i][n+i]=1;
}
Gauss();
return 0;
}
清明 DAY 1的更多相关文章
- 清明梦超能力者黄YY(idx数组)
清明梦超能力者黄YY https://www.nowcoder.com/acm/contest/206/I 题目描述 黄YY是一个清明梦超能力者,同时也是一个记忆大师.他能够轻松控制自己在梦中的一切, ...
- 清明|TcaplusDB持续为您保驾护航
清明将至,又到一年休闲踏青,祭拜祖先的时机. 清明假期期间,TcaplusDB不停歇,我们将一如既往地守护您的数据,继续做您最坚实的后盾. 在未来,TcaplusDB还将以国产键值型数据库领航者的身 ...
- 清明培训 清北学堂 DAY2
今天是钟皓曦老师的讲授~~ 总结了一下今天的内容: 数论!!! 1.整除性 2.质数 定义: 性质: 3.整数分解定理——算数基本定理 证明: 存在性: 设N是最小不满足唯一分解定理的整数 (1) ...
- 清明培训 清北学堂 DAY1
今天是李昊老师的讲授~~ 总结了一下今天的内容: 1.高精度算法 (1) 高精度加法 思路:模拟竖式运算 注意:进位 优化:压位 程序代码: #include<iostream>#in ...
- 2019清明期间qbxt培训qaq
4.4下午:矩阵qwq part1矩阵乘法: 概念: 一个m×p的矩阵A 乘 一个p×n的矩阵B 得到一个矩阵一个m×n的矩阵AB 其中: 矩阵乘法满足结合律.分配率,不满足交换律 矩阵乘法—solu ...
- 2019清明期间qbxt培训qwq
4.4上午:数学基础 (qwq整成word和cpp了,它居然不能直接把文档附上来) part 1:高精度运算 高精加和高精减就不说了,之前写过博客了qwq,讲一讲高精乘和高精除吧. 1.高精度乘法(不 ...
- 清明 DAY2
数论 数论是研究整数性质的东西 也就是 lim π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr b= ...
- 一个讲课截屏 清明DAY2
灰常混乱 放弃吧........ 不断做平方差公式 到i时,前面已经求出之前数字的逆元了 r是一个比i小的数 第四行×i,r 的逆元 BSGS 暴力枚举枚举到Φ(m)个
- 清明小长假之VUE.JS学习测试码
我们放了四天假,刚好借此机会,系统的了解一下VUE.JS. <!DOCTYPE html> <html> <head> <meta charset=" ...
随机推荐
- 2 jmeter常用功能介绍-测试计划、线程组
1.测试计划测试用来描述一个性能测试,所有内容都是基于这个测试计划的. (1)User Defined Variables:设置用户全局变量.一般添加一些系统常用的配置.如果测试过程中想切换环境,切换 ...
- rest_framework的认证系统
1.认证模块 必须用户登录之后才能访问所有图书,才能修改图片,才能查询单个图书 2.怎么使用 其实本质上就是携带token字符串,然后后台拿到数据再取数据库进行校验,看是否有这个用户 先手写一个认证模 ...
- 使用awk处理文本
http://blog.wuxu92.com/using-awk/ 在Liux下我们经常需要对一些文本文档做一些处理,尤其像从日志里提取一些数据,这是我们一般会用awk工具和sed工具去实现需求,这里 ...
- spring的面向切面实现的两种方式
面向切面:主要应用在日志记录方面.实现业务与日志记录分离开发. spring面向切面有两种实现方式:1.注解 2.xml配置. 1.注解实现如下: (1)配置如下: <?xml version= ...
- 【LeetCode每天一题】Valid Parentheses(有效的括弧)
Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the inpu ...
- SpringMVC的Model ModeMap ModelAndView @ModelAttribute @SessionAttribute区分
Spring MVC整理系列(05)————Spring MVC配置解析及整合SpriSpring MVC之@ModelAttribute.@SessionAttributes以及Model的使用介绍 ...
- jenkins 常用插件和配置项介绍和使用
jenkins 上搜索不到的插件可以在如下地址下载: http://updates.jenkins-ci.org/download/plugins/ 1.Notification Plugin 介绍: ...
- .yml文件格式
http://yaml.org/ YAML: YAML Ain't Markup Language What It Is: YAML is a human friendly data serializ ...
- Entity Framework(Fluent API)
一.概述 Fluent API 可以理解为一种从POCO到数据库的映射约定,包括字段长度,类型,主外键等等,在EF Code First进行开发时候经常用到. 1.主键 modelBuilder.En ...
- android 调用webview控件,为逆向h5app做准备
activity对应layout文件加入: <WebView android:id="@+id/main_web" android:layout_width="ma ...

