Problem Description

#include <iostream>

#include <algorithm>

using namespace std;



int n,a[110000],b[110000],c[110000],d[110000];

int main()

{

      while(cin>>n)

      {

            for(int i=0;i<n;++i)  cin>>a[i];

            for(int i=0;i<n;++i)  cin>>b[i];

            for(int i=0;i<n;++i)  cin>>c[i];

            for(int i=0;i<n;++i)  cin>>d[i];



            for(int i=0;i<n;++i)

                  if(a[i]>b[i])  swap(a[i],b[i]);

            for(int i=0;i<n;++i)

                  if(c[i]>d[i])  swap(c[i],d[i]);



            for(int i=0;i<n;++i)

            {

                  int ans=0;

                  for(int j=0;j<n;++j)

                        if(a[i]<=c[j]&&d[j]<=b[i])  ans++;

                  cout<<ans<<endl;

            }

      }

      return 0;

}





Even you are brave enough still, I really not recommend you to copy the code and just submit it.

Input

Input contains several cases.

Each case begins with an integer n (0<n<=100000).

Then follow with 4 lines representing a[ ],b[ ],c[ ] and d[ ], all values are located in [1,100000].

Output

For each case, just write out the answer as what the code do.

Sample Input

4
1 1 1 2
1 1 1 2
1 1 1 1
1 1 1 1

Sample Output

4
4
4
0

题目大意:

给你二组线段A,B 询问A组中每一个线段包含了多少B组线段

将A,B按左端点排序;

那么当B前面线段若不满足当前A了 ,就可以废弃不用了,即B.x<A[now].x。

所以未被删除的B线段都是满足了左端点,现在只需要求是否满足右端点即可。

用线段树来维护B的右端点。若B一条废弃不用,更新线段树即可。每次查询【0-A[now].y】有多少元素即可

nlogn的复杂度。

最后还要按序号排序回来,因为要按输入顺序输出,代码如下:

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
#define oo 0x13131313
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn=100000+5;
struct node
{
int x,y,num,ans;
}A[maxn],B[maxn];
int n;
int tree[maxn<<2];
bool cmp(node a,node b)
{
return a.x<b.x;
}
bool cmp1(node a,node b)
{
return a.num<b.num;
}
void pushup(int rt)
{
tree[rt]=tree[rt<<1]+tree[rt<<1|1];
}
int build(int l,int r,int rt)
{
if(l==r) {tree[rt]=0;return 0;}
int m=(l+r)>>1;
build(lson);
build(rson);
pushup(rt);
}
int updata(int p,int k,int l,int r,int rt)//单点更新
{
int m;
if(l==r) {tree[rt]+=k;return 0;}
m=(l+r)>>1;
if(p<=m) updata(p,k,lson);
else updata(p,k,rson);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
int temp=0,m;
if(L<=l&&r<=R) return tree[rt];
m=(l+r)>>1;
if(L<=m) temp=temp+query(L,R,lson);
if(R>m) temp=temp+query(L,R,rson);
return temp;
}
void input()
{
for(int i=0;i<n;++i) {scanf("%d",&A[i].x);A[i].num=i;}
for(int i=0;i<n;++i) scanf("%d",&A[i].y);
for(int i=0;i<n;++i) scanf("%d",&B[i].x);
for(int i=0;i<n;++i) scanf("%d",&B[i].y);
for(int i=0;i<n;++i)
if(A[i].x>A[i].y) swap(A[i].x,A[i].y);
for(int i=0;i<n;++i)
if(B[i].x>B[i].y) swap(B[i].x,B[i].y);
sort(B,B+n,cmp);
sort(A,A+n,cmp);
}
void solve()
{
int tot=0;
for(int i=0;i<n;i++)
{
updata(B[i].y,1,1,maxn-1,1);
}
for(int i=0;i<n;i++)
{
int ans=0;
while(B[tot].x<A[i].x&&tot<n) {
updata(B[tot].y,-1,1,maxn-1,1);
tot++;
}
ans=query(1,A[i].y,1,maxn-1,1);
A[i].ans=ans;
}
sort(A,A+n,cmp1);
for(int i=0;i<n;i++) printf("%d\n",A[i].ans);
}
void init()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
}
int main()
{
// init();
while(scanf("%d",&n)!=EOF)
{
input();
build(1,maxn-1,1);
solve();
}
}

【线段树】【4-6组队赛】Problem H的更多相关文章

  1. 线段树:CDOJ1591-An easy problem A (RMQ算法和最简单的线段树模板)

    An easy problem A Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...

  2. HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. 线段树:CDOJ1592-An easy problem B (线段树的区间合并)

    An easy problem B Time Limit: 2000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...

  4. 线段树:CDOJ1597-An easy problem C(区间更新的线段树)

    An easy problem C Time Limit: 4000/2000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...

  5. 线段树:POJ3468-A Simple Problem with Integers(线段树注意事项)

    A Simple Problem with Integers Time Limit: 10000MS Memory Limit: 65536K Description You have N integ ...

  6. 【POJ3468】【zkw线段树】A Simple Problem with Integers

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...

  7. 计蒜客 31460 - Ryuji doesn't want to study - [线段树][2018ICPC徐州网络预赛H题]

    题目链接:https://nanti.jisuanke.com/t/31460 Ryuji is not a good student, and he doesn't want to study. B ...

  8. 线段树---poj3468 A Simple Problem with Integers:成段增减:区间求和

    poj3468 A Simple Problem with Integers 题意:O(-1) 思路:O(-1) 线段树功能:update:成段增减 query:区间求和 Sample Input 1 ...

  9. 【算法系列学习】线段树 区间修改,区间求和 [kuangbin带你飞]专题七 线段树 C - A Simple Problem with Integers

    https://vjudge.net/contest/66989#problem/C #include<iostream> #include<cstdio> #include& ...

  10. (线段树 区间查询)The Water Problem -- hdu -- 5443 (2015 ACM/ICPC Asia Regional Changchun Online)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=5443 The Water Problem Time Limit: 1500/1000 MS (Java/ ...

随机推荐

  1. [Leetcode][Python]43: Multiply Strings

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 43: Multiply Stringshttps://leetcode.co ...

  2. linux中的strings命令简介2

    摘自:http://blog.csdn.net/stpeace/article/details/46641069 linux中的strings命令简介 之前我们聊过linux strings的用法和用 ...

  3. iOS 创建推送证书

    1.首先你想创建推送证书和以前你做真机测试证书一样,需要实现准备一个99$的付费账号.然后登陆苹果开发者网站.http://developer.apple.com/ 2.登陆以后你能看到这个界面然后选 ...

  4. Sending HTML Form Data

    public Task<HttpResponseMessage> PostFormData(){ // Check if the request contains multipart/fo ...

  5. Format类及其子类功能和使用方法具体解释

    Format类及其子类功能和使用方法具体解释 1.   Format类结构: ·        java.lang.Object ·        java.text.Format ·         ...

  6. UVA 1611 Crane

    题意: 输入一个1-n的排列,要求经过操作将其变换成一个生序序列.操作的规则如下每次操作时,可以选一个长度为偶数的连续区间,交换前一半和后一半. 分析: 假设操作到第i个位置,而i这个数刚好在pos这 ...

  7. (三)Android中Intent概念及应用

    一.显示Intent startActivity(new Intent(MainActivity.this,BAty.class)); 显示Intent直接指定要启动的Intent类 注意自己通过创建 ...

  8. C#面向对象 基础概念25个

    1.静态成员和非静态成员的区别?2.const 和 static readonly 区别?3.extern 是什么意思?4.abstract 是什么意思?5.internal 修饰符起什么作用?6.s ...

  9. iOS设计模式解析(三)适配器模式

    适配器模式:将一个类的借口转换成客户端希望的另一个接口 有一个很直观的图: 例如      :电源适配器(将110V电压转换成220V电压,其中Traget是220V电压,adaptee就是110V电 ...

  10. 【.Net】文件并发(日志处理)--队列--Redis+Log4Net

    多线程操作同一个文件时会出现并发问题.解决的一个办法就是给文件加锁(lock),但是这样的话,一个线程操作文件时,其它的都得等待,这样的话性能非常差.另外一个解决方案,就是先将数据放在队列中,然后开启 ...