hdu 4349 Xiao Ming's Hope lucas
给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数。
我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2, m/2)%2, C(n/2, m/2) = C(n/2%2, m/2%2)*C(n/2/2, m/2/2), 这样一直递归下去,直到m为0。 我们知道如果一个数是奇数, 那么它的所有因子都是奇数, 对应于上面的式子, n%2是偶数的时候, m%2也必须是偶数才可以, 而n%2是奇数的时候, m%2的值则没有要求。 而n/2, 相当于是二进制的n向右移了一位。所以最后的结果相当于是2^num, num是n的二进制中1的个数。
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
int main()
{
int n;
while(scanf("%d", &n)!=EOF) {
int ans = ;
while(n) {
if(n&)
ans++;
n>>=;
}
printf("%d\n", <<ans);
}
return ;
}
hdu 4349 Xiao Ming's Hope lucas的更多相关文章
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]
这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...
- HDU 4349 Xiao Ming's Hope 找规律
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...
- HDU 4349——Xiao Ming's Hope——————【Lucas定理】
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4349 Xiao Ming's Hope 规律
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4349 Xiao Ming's Hope
非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假 ...
- HDU 4349 Xiao Ming's Hope 组合数学
题意:给你n,问在C(n,1),C(n,2)...C(n,n)中有多少个奇数. 比赛的时候打表看出规律,这里给一个数学上的说明. Lucas定理:A,B非负整数,p是质数,A,B化为p进制分别为a[n ...
- HDU 4349 Xiao Ming's Hope
有这样一个性质:C(n,m)%p=C(p1,q1)*C(p2,q2).......%p,其中pkpk-1...p1,qkqk-1...q1分别是n,m在p进制下的组成. 就完了. #include&l ...
- HDU 5433 Xiao Ming climbing dp
Xiao Ming climbing Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/ ...
随机推荐
- 愤怒的DZY(二分)
愤怒的DZY[问题描述]“愤怒的小鸟”如今已经是家喻户晓的游戏了,机智的WJC最近发明了一个类似的新游戏:“愤怒的DZY”.游戏是这样的:玩家有K个DZY,和N个位于不同的整数位置:X1,X2,…,X ...
- 【分享】事实上,你VS界面也可以如此,VS界面美化
阿土.它直接在地图上. 第一节目:Transformers(变形金刚) 第二方案:Assassin's Creed (刺客信条) watermark/2/text/aHR0cDovL2Jsb2cuY3 ...
- JDBC Connection Reset问题分析
2014年7月13日 半年前開始.项目组測试MM在验证功能时.常常报怨讲測试环境上的应用在启动时非常慢,偶尔会报失败,遇到类似问题多数情况下又一次启动一次就能够启动成功,但少数时候也有重复启动不成功的 ...
- 一个简单的Spring AOP例子
转载自: http://www.blogjava.net/javadragon/archive/2006/12/03/85115.html 经过这段日子的学习和使用Spring,慢慢地体会到Sprin ...
- Hibernate的使用梳理
Hibernate创建步骤 (五大核心接口:Configuration/SessionFactory/Session/Transaction/Query) 1.新建java工程,导入需要的jar包. ...
- Mac之vim普通命令使用
Mac之vim普通命令使用 标签: vim命令 高级一些的编辑器,都会包含宏功能,vim当然不能缺少了,在vim中使用宏是非常方便的: :qx 开始记录宏,并将结果存入寄存器x q 退出记录模式 @x ...
- .Net平台-MVP模式再探(二)
PS: 本文与 上一遍文章 没有什么必然的联系,可以说是对于MVP的一定的加深,或许在理解上比上一篇多有点难度. 正文 一.简单讲讲MVP是什么玩意儿 如果从层次关系来讲,MVP属于P ...
- Java 动态代理(转)
一.代理模式 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事后 处理消息等.代理类与委托类之间通常会存在 ...
- 怎样使用Markdown
转自:http://wowubuntu.com/markdown/basic.html 段落.标题.区块代码 一个段落是由一个以上的连接的行句组成,而一个以上的空行则会划分出不同的段落(空行的定义是显 ...
- 你需要了解的JS框架
excanvas.js/Chart.js/cubism.js/d3.js/dc.js/dx.chartjs.js/echarts.js/flot.js 用途:构建数据统计图表,兼容多浏览器 ...