Dividing coins

It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nickel, which was made of copper. They were both so eager to get it and the fighting was so fierce, they stretched the coin to great length and thus created copper-wire.

Not commonly known is that the fighting started, after the two Dutch tried to divide a bag with coins between the two of them. The contents of the bag appeared not to be equally divisible. The Dutch of the past couldn't stand the fact that a division should favour one of them and they always wanted a fair share to the very last cent. Nowadays fighting over a single cent will not be seen anymore, but being capable of making an equal division as fair as possible is something that will remain important forever...

That's what this whole problem is about. Not everyone is capable of seeing instantly what's the most fair division of a bag of coins between two persons. Your help is asked to solve this problem.

Given a bag with a maximum of 100 coins, determine the most fair division between two persons. This means that the difference between the amount each person obtains should be minimised. The value of a coin varies from 1 cent to 500 cents. It's not allowed to split a single coin.

Input

A line with the number of problems
n, followed by
n times:

  • a line with a non negative integer m () indicating the number of coins in the bag
  • a line with m numbers separated by one space, each number indicates the value of a coin.

Output

The output consists of
n lines. Each line contains the minimal positive difference between the amount the two persons obtain when they divide the coins from the corresponding bag.

Sample Input

2
3
2 3 5
4
1 2 4 6

题意:一堆硬币分给两个人,要求两个人得到钱差值最少,输出这个差值。

思路:01背包。硬币总价值为sum,一个人分到i,另一个人肯定分到sum - i,如果硬币尽量平分是最好的,先用01背包求出所有可能组成的值,然后从sum / 2开始找,找到一个可以组成的值作为i,他们的差值为sum - 2 * i。

代码:

#include <stdio.h>
#include <string.h> int t, n, coin[105], sum, i, j, dp[50005];
int main() {
scanf("%d", &t);
while (t --) {
scanf("%d", &n);
sum = 0;
memset(dp, 0, sizeof(dp));
dp[0] = 1;
for (i = 0; i < n; i ++) {
scanf("%d", &coin[i]);
sum += coin[i];
}
for (i = 0; i < n; i ++)
for (j = sum; j >= coin[i]; j --) {
if (dp[j - coin[i]])
dp[j] = 1;
}
for (i = sum / 2; i >= 0; i --)
if (dp[i]) {
printf("%d\n", sum - i * 2);
break;
}
}
return 0;
}

UVA 562 Dividing coins(dp + 01背包)的更多相关文章

  1. uva 562 Dividing coins(01背包)

      Dividing coins  It's commonly known that the Dutch have invented copper-wire. Two Dutch men were f ...

  2. UVA 562 Dividing coins (01背包)

    题意:给你n个硬币,和n个硬币的面值.要求尽可能地平均分配成A,B两份,使得A,B之间的差最小,输出其绝对值.思路:将n个硬币的总价值累加得到sum,   A,B其中必有一人获得的钱小于等于sum/2 ...

  3. UVA 562 Dividing coins【01背包 / 有一堆各种面值的硬币,将所有硬币分成两堆,使得两堆的总值之差尽可能小】

    It's commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nic ...

  4. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  5. UVA 562 Dividing coins --01背包的变形

    01背包的变形. 先算出硬币面值的总和,然后此题变成求背包容量为V=sum/2时,能装的最多的硬币,然后将剩余的面值和它相减取一个绝对值就是最小的差值. 代码: #include <iostre ...

  6. UVA 562 Dividing coins (01背包)

    //平分硬币问题 //对sum/2进行01背包,sum-2*dp[sum/2] #include <iostream> #include <cstring> #include ...

  7. UVA 562 Dividing coins 分硬币(01背包,简单变形)

    题意:一袋硬币两人分,要么公平分,要么不公平,如果能公平分,输出0,否则输出分成两半的最小差距. 思路:将提供的整袋钱的总价取一半来进行01背包,如果能分出出来,就是最佳分法.否则背包容量为一半总价的 ...

  8. UVa 562 - Dividing coins 均分钱币 【01背包】

    题目链接:https://vjudge.net/contest/103424#problem/E 题目大意: 给你一堆硬币,让你分成两堆,分别给A,B两个人,求两人得到的最小差. 解题思路: 求解两人 ...

  9. Dividing coins (01背包)

    It’s commonly known that the Dutch have invented copper-wire. Two Dutch men were fighting over a nic ...

随机推荐

  1. POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  2. 【C语言用法】C语言的函数“重载”

    由于平时很少用到__attribute__定义函数或者变量的符号属性,所以很难想象C语言可以向C++一样进行函数或者变量的重载. 首先,复习一下有关强符号与弱符号的概念和编译器对强弱符号的处理规则: ...

  3. Entity Framework 技术参考:http://kb.cnblogs.com/zt/ef/

    Entity Framework 技术参考:http://kb.cnblogs.com/zt/ef/

  4. bootstrap绿色大气后台模板下载[转]

    From:http://www.oschina.net/code/snippet_2364127_48176 1. [图片] 2. [文件] 素材火官网后台模板下载.rar ~ 4MB     下载( ...

  5. Windows多线程同步系列之二-----关键区

    关键区对象为:CRITICAL_SECTION 当某个线程进入关键区之后,其他线程将阻塞等待,知道该线程释放关键区的拥有权. 关键区同步主要有以下几个API 初始化关键区对象,无返回值,传入一个关键区 ...

  6. 总结一下用caffe跑图片数据的研究流程

    近期在用caffe玩一些数据集,这些数据集是从淘宝爬下来的图片.主要是想研究一下对女性衣服的分类. 以下是一些详细的操作流程,这里总结一下. 1 爬取数据.写爬虫从淘宝爬取自己须要的数据. 2 数据预 ...

  7. QUdpSocket Class

    翻译自:QT官网文档QUdpSocket类 QUdpSocket类提供一个UDP套接字. Header: #include <QUdpSocket> qmake: QT += networ ...

  8. mysql 5.6

    mysql 5.6的安裝: 1,提前安装依赖的库环境. yum install -y  make bison cmake gcc-c++ ncurses ncurses-devel  git 2,下载 ...

  9. Android多媒体开发-stagefright及AwesomePlayer相关知识梳理

    android的多媒体框架中, stagefright其实是AwesomePlayer的代理,就是个皮包公司. status_t StagefrightPlayer::setDataSource( c ...

  10. Oozie — What Why and How

    Oozie是什么? Oozie最初是Yahoo!为Hadoop开发的一个工作流调度器,一个工作流有多个Job组成.它允许用户提交由多个Job组成的工作流配置文件,这些Job既可以顺序执行,也可以并行执 ...