原始链接--http://www.jiahenglu.net/NSFC/LSH.html

LSH(Location Sensitive Hash),即位置敏感哈希函数。与一般哈希函数不同的是位置敏感性,也就是散列前的类似点经过哈希之后,也可以在一定程度上类似,而且具有一定的概率保证。

形式化定义:

对于随意q,p属于S,若从集合S到U的函数族H={h1,h2...hn}对距离函数D(,),如欧式距离、曼哈顿距离等等,满足条件:

则称D(,)是位置敏感的。

例如以下图,空间上的点经位置敏感哈希函数散列之后,对于q,其rNN有可能散列到同一个桶(如第一个桶),即散列到第一个桶的概率较大,会大于某一个概率阈值p1;而其(1+emxilong)rNN之外的对象则不太可能散列到第一个桶,即散列到第一个桶的概率非常小,会小于某个阈值p2.

LSH的作用

◆高维下近似查询

类似性检索在各种领域特别是在视频、音频、图像、文本等含有丰富特征信息领域中的应用变得越来越重要。丰富的特征信息一般用高维向量表示,由此类似性检索一般通过K近邻或近似近邻查询来实现。一个理想的类似性检索一般须要满足下面四个条件:

1. 高准确性。即返回的结果和线性查找的结果接近。

2. 空间复杂度低。即占用内存空间少。理想状态下,空间复杂度随数据集呈线性增长,但不会远大于数据集的大小。

3. 时间复杂度低。检索的时间复杂度最好为O(1)或O(logN)。

4. 支持高维度。可以较灵活地支持高维数据的检索。

传统主要方法是基于空间划分的算法——tree相似算法,如R-tree,Kd-tree,SR-tree。这样的算法返回的结果是精确的,可是这样的算法在高维数据集上的时间效率并不高。实验[1]指出维度高于10之后,基于空间划分的算法时间复杂度反而不如线性查找。LSH方法可以在保证一定程度上的准确性的前提下,时间和空间复杂度得到减少,而且可以非常好地支持高维数据的检索。

◆分类和聚类

依据LSH的特性,就可以将相近(类似)的对象散列到同一个桶之中,则能够对图像、音视频、文本等丰富的高维数据进行分类或聚类。

◆数据压缩。如广泛地应用于信号处理及数据压缩等领域的Vector Quantization量子化技术。

总而言之,哪儿须要近似kNN查询,哪儿都能用上LSH.

[1] Weber R, Schek H, Blott S. A quantitative analysis and performance study for similarity search methods in high dimensional spaces Proc.of the 24th Intl.Conf.on Very Large Data Bases (VLDB).1998:194-205

LSH算法原理的更多相关文章

  1. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  2. RSA算法原理

    一直以来对linux中的ssh认证.SSL.TLS这些安全认证似懂非懂的.看到阮一峰博客中对RSA算法的原理做了非常详细的解释,看完之后茅塞顿开,关于RSA的相关文章如下 RSA算法原理(一) RSA ...

  3. LruCache算法原理及实现

    LruCache算法原理及实现 LruCache算法原理 LRU为Least Recently Used的缩写,意思也就是近期最少使用算法.LruCache将LinkedHashMap的顺序设置为LR ...

  4. MySQL索引背后的数据结构及算法原理【转】

    本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...

  5. OpenGL学习进程(13)第十课:基本图形的底层实现及算法原理

        本节介绍OpenGL中绘制直线.圆.椭圆,多边形的算法原理.     (1)绘制任意方向(任意斜率)的直线: 1)中点画线法: 中点画线法的算法原理不做介绍,但这里用到最基本的画0<=k ...

  6. 支持向量机原理(四)SMO算法原理

    支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...

  7. 分布式缓存技术memcached学习(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...

  8. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  9. GBDT算法原理深入解析

    GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...

随机推荐

  1. find -exec

    find -exec 的标准写法 find ./ -name "*.tmp" -exec rm -rf "{}" \; find -exec 这个命令组合很好用 ...

  2. CDH 1、CDH简介

    1.Apache Hadoop 不足之处 • 版本管理混乱 • 部署过程繁琐.升级过程复杂 • 兼容性差 • 安全性低 2.Hadoop 发行版 • Apache Hadoop • Cloudera’ ...

  3. 【转】android 电容屏(三):驱动调试之驱动程序分析篇

    关键词:android  电容屏 tp 工作队列 中断 坐点计算  电容屏主要参数平台信息:内核:linux2.6/linux3.0系统:android/android4.0  平台:S5PV310( ...

  4. UISearchBar 点击X 按钮收键盘

    - (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText;{ NSLog(@"textD ...

  5. ZOJ1372 POJ 1287 Networking 网络设计 Kruskal算法

    题目链接:problemCode=1372">ZOJ1372 POJ 1287 Networking 网络设计 Networking Time Limit: 2 Seconds     ...

  6. 谋哥:研究App排行榜浮出的神器

    昨天发的<App排行榜的秘密>到头条网,阅读量到2万,踩的比顶的多几倍.原因是由于我使用360市场的数据来分析,而且这帮喷子根本不看你分析数据背后的意义,反正看到自己不喜欢的比方" ...

  7. toj2867 Picking Problem

    题目链接:http://acm.tju.edu.cn/toj/showp.php?pid=2867 题目大意:给定一系列活动的开始时间和结束时间,问最多能参加的活动数目 思路:// 本题属于最大区间调 ...

  8. 杭电 3887 Counting Offspring

    根据上篇翻译的文章以及很多个帖子,都讲述了树状数组最基本的功能就是tree[i]保存的是位置i左边小于等于a[i]的数的个数. 这样也就可以解释代码中为什么有f[i]=getsum(sd[i-1])- ...

  9. crm使用soap更改下拉框的文本值

    //C#代码 //UpdateStateValueRequest updateStateValue = new UpdateStateValueRequest //{ //    AttributeL ...

  10. powershell 将文本转换成表格的还有一种方式

    $text=" 1 梦幻西游 216406 2014-01-21 资料片 2 炉石传说 15905 2014-01-24 公測 3 新大话西游 214465 2002-08-01 公測 4 ...