[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2
Show that the following statements are equivalent:
(1). $A$ is positive.
(2). $A=B^*B$ for some $B$.
(3). $A=T^*T$ for some upper triangular $T$.
(4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive definite, then the factorization in (4) is unique. This is called the Cholesky decomposition of $A$.
Solution. (1)$\ra$(2). Since $A$ is positive, and thus is Hermitian, $\exists$ unitary $Q$, $\st$ $$\bex A=Q\diag(\lm_1,\cdots,\lm_n)Q^*,\quad \lm_i\geq 0. \eex$$ Take $$\bex B=\diag\sex{\sqrt{\lm_1},\cdots,\sqrt{\lm_n}}Q, \eex$$ then $A=B^*B$.
(2)$\ra$(4). By QR decomposition, $\exists$ orthogonal $Q$, upper triangular $R$ with diagonals $\geq0$, $\st B=QR$. Thus $$\bex A=B^*B=R^*Q^*QR=R^*R. \eex$$
(4)$\ra$(1). First, $A$ is Hermitian. Second, $$\bex x^*Ax=x^*T^*Tx=\sen{Tx}^2\geq 0,\quad \forall\ x. \eex$$
(3)$\ra$(1). Just do as that in (4)$\ra$(1).
(1)$\ra$(3). Just use the QR decomposition.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- x86与x64与x86_64
x86是指intel的开发的一种32位指令集,从386开始时代开始的,一直沿用至今,是一种cisc指令集,所有intel早期的cpu,amd早期的cpu都支持这种指令集,ntel官方文档里面称为“IA ...
- Linux学习笔记2
1.系统引导配置文件 # vi /boot/grub/grub.conf default=0 timeout=5 splashimage=(hd0,0)/grub/splash.xpm. ...
- linux点滴:rsync
rsync(remote sync)是一款远程同步工具,可以实现全量备份.增量备份.本地备份.删除,核心功能是远程数据备份. 工作原理 rsync核心算法 1.分块checksum算法 首先,把文件平 ...
- C# 格式化字符串(转载)
1 前言 如果你熟悉Microsoft Foundation Classes(MFC)的CString,Windows Template Library(WTL)的CString或者Standard ...
- MVC-Html.Label(TextBox、TextArea、RadioButton、CheckBox)
红色表示可选参数. @Html.Label("name", "value", new { @class = "class", @style ...
- Unity3d Shader开发(三)Pass(Alpha testing )
透明度测试是阻止像素被写到屏幕的最后机会. 在最终渲染出的颜色被计算出来之后,可选择通过将颜色的透明度值和一个固定值比较.如果比较的结果失败,像素将不会被写到显示输出中. Syntax 语法 Alph ...
- 我的PHP之旅--PHP的判断、循环语句
if语句 <?php if ($a = "some string") { // 就算括号中不是bool值,php也会自动转换为bool值 上一节写过各个类型转换bool值 / ...
- C#操作mongodb数据库
1.下载驱动: 如下图:选择c#解决方案,右键,点击 “管理NuGet程序包(N)...” 在弹出的对话框中,输入MongoDB.Driver,进行搜索,然后选择安装. 2.引用命名空间: using ...
- BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机
Description 约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农场里,使它不被发现.在挤奶机制造的过程中,他需要去挤奶机所在的地方T(1≤T ...
- 1842-A. Broj
#include <iostream> using namespace std; int main() { int n; cin>>n; if(n>0&& ...