Show that the following statements are equivalent:

(1). $A$ is positive.

(2). $A=B^*B$ for some $B$.

(3). $A=T^*T$ for some upper triangular $T$.

(4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive definite, then the factorization in (4) is unique. This is called the Cholesky decomposition of $A$.

Solution.  (1)$\ra$(2). Since $A$ is positive, and thus is Hermitian, $\exists$ unitary $Q$, $\st$ $$\bex A=Q\diag(\lm_1,\cdots,\lm_n)Q^*,\quad \lm_i\geq 0. \eex$$ Take $$\bex B=\diag\sex{\sqrt{\lm_1},\cdots,\sqrt{\lm_n}}Q, \eex$$ then $A=B^*B$.

(2)$\ra$(4). By QR decomposition, $\exists$ orthogonal $Q$, upper triangular $R$ with diagonals $\geq0$, $\st B=QR$. Thus $$\bex A=B^*B=R^*Q^*QR=R^*R. \eex$$

(4)$\ra$(1). First, $A$ is Hermitian. Second, $$\bex x^*Ax=x^*T^*Tx=\sen{Tx}^2\geq 0,\quad \forall\ x. \eex$$

(3)$\ra$(1). Just do as that in (4)$\ra$(1).

(1)$\ra$(3). Just use the QR decomposition.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. centos coreseek 快速安装

    CoreSeek快速安装: 安装前,建议查看:源码包说明README:4.0/4.1版可参考3.2版本安装,步骤相同:如遇到问题,请看详细安装说明. ##下载coreseek:coreseek 3.2 ...

  2. Linux查找软件的安装路径

    软件安装的路径可能不止一个,可以使用whereis命令查看软件安装的所有路径,以mysql为例: whereis mysql 该命令会返回软件的所有安装路径: mysql: /usr/bin/mysq ...

  3. html+ashx 缓存问题

    最近采用html+ashx的方式做了一个项目的几个配置页面的功能,由于浏览器的缓存问题,每次更新数据提交后,页面总是不会刷新,也就是说除了第一次加载页面会向一般处理(ashx)拿数据外,其他情况都是优 ...

  4. jQuery.ajax()的一些例子

    例子: Example: 保存数据到服务器,成功时显示信息. 1 2 3 4 5 6 7 $.ajax({ method: "POST", url: "some.php& ...

  5. H5发展简介

    HTML4.01 超文本标记语言,1999年12月24日由W3C组织发布. XHTML 扩展的超文本标记语言(eXtensible Hyper Text Markup Language),和HTML4 ...

  6. 【3】Bootstrap的下载和目录结构

    [1]下载 去中方官网下载http://www.bootcss.com/ 如果你是做网页练习,你可以使用CDN加速服务,免去下载等痛苦,当然你使用的时候必须有连接上网络.中方的官网也提供了很多种类的C ...

  7. Mac OSX 安装Python的paramiko模块经验总结

    一.简单介绍 最近需要用Python模拟登录远程服务器并自动执行一些代码,需要安装一个叫paramiko的模块. paramiko官方介绍遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接 ...

  8. js事件之神奇的onclick

    21:58 2013/7/1 <a href="#" onclick="alert(123124);" >链接</a> 意思是鼠标点击链 ...

  9. xcode 中添加pch文件

    xcode6以后去掉了pch文件,据说苹果是觉得把头文件加在pch中,会让编译变慢,但是作为我们程序员来说难不倒我们,所以我们手动来添加一下pch文件即可   首先创建一个工程,然后创建一个pch文件 ...

  10. 使用WiX Toolset创建.NET程序发布Bootstrapper(安装策略管理)(一)-----初识WiX (转)

    原文地址:http://blog.csdn.net/rryqsh/article/details/8274832 Visual Studio 打包安装七宗罪 开发.NET的人,肯定会使用Visual ...