[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2
Show that the following statements are equivalent:
(1). $A$ is positive.
(2). $A=B^*B$ for some $B$.
(3). $A=T^*T$ for some upper triangular $T$.
(4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive definite, then the factorization in (4) is unique. This is called the Cholesky decomposition of $A$.
Solution. (1)$\ra$(2). Since $A$ is positive, and thus is Hermitian, $\exists$ unitary $Q$, $\st$ $$\bex A=Q\diag(\lm_1,\cdots,\lm_n)Q^*,\quad \lm_i\geq 0. \eex$$ Take $$\bex B=\diag\sex{\sqrt{\lm_1},\cdots,\sqrt{\lm_n}}Q, \eex$$ then $A=B^*B$.
(2)$\ra$(4). By QR decomposition, $\exists$ orthogonal $Q$, upper triangular $R$ with diagonals $\geq0$, $\st B=QR$. Thus $$\bex A=B^*B=R^*Q^*QR=R^*R. \eex$$
(4)$\ra$(1). First, $A$ is Hermitian. Second, $$\bex x^*Ax=x^*T^*Tx=\sen{Tx}^2\geq 0,\quad \forall\ x. \eex$$
(3)$\ra$(1). Just do as that in (4)$\ra$(1).
(1)$\ra$(3). Just use the QR decomposition.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- centos svn安装
http://fengjunoo.iteye.com/blog/1759265(参考) 以前在ubuntu上安装过一次svn,那次弄得有些麻烦. 这次记录下centos环境下安装svn的步骤 其实简单 ...
- JDBC访问SQLServer2008数据库
来源:十二随风博客 由JDBC驱动直接访问数据库优点:100% Java,快又可跨平台缺点:访问不同的数据库需要下载专用的JDBC驱动 (1)下载对应数据库版本的jdbc驱动并安装,注意安装后的得到的 ...
- MVC文件上传-使用jQuery.FileUpload和Backload组件实现文件上传
本篇使用客户端jQuery-File-Upload插件和服务端Badkload组件实现多文件异步上传.MVC文件上传相关兄弟篇: 处理文件上传的服务端组件Backload 用于处理文件上传的服务端组件 ...
- iis7如何取消目录的可执行权限
我们需要把IIs中某一个目录的可执行权限去掉.这在IIs6中是非常方便的,可是因为iis7的机制小编也找了不少资料才找到. 第一步:先选择需要取消权限的目录,然后在右边可以看到 “处理程序映射” 双击 ...
- DataTable数据进行排序、检索、合并、分页、统计
在做程序时经常遇到要将反复对数据进行筛选.求和.排序.分页等的情况.每次的数据操作都要去访问数据库很明显是不合理的!当然需要实时数据的情况除外,不做讨论哈.今天无意间在网上看到了这篇文章,挺实用的,拿 ...
- Hadoop常见的45个问题解答
(大讲台:国内首个it在线教育混合式自适应学习) 1.Hadoop集群可以运行的3个模式 单机(本地)模式 伪分布式模式 全分布式模式 2. 单机(本地)模式中的注意点? 在单机模式(standal ...
- 《JavaScript启示录》摘抄
1.JavaScript预包装的9个原生的对象构造函数: Number(),String(),Boolean(),Object(),Array(),Function(),Data(),RegExp() ...
- C# winform 弹出输入框
Microsoft.VisualBasic.dll 引用using Microsoft.VisualBasic; string PM = Interaction.InputBox("提示 ...
- HDU 1253 胜利大逃亡(三维BFS)
点我看题目 题意 : 中文题不详述. 思路 :因为还牵扯到层的问题,所以用三维的解决,不过这个还是很简单的BFS,六个方向搜一下就可以了,一开始交的时候老是超时,怎么改都不对,后来看了一个人写的博客, ...
- RPM包制作最简单样例
相关开发RPM的包要安装 Summary: the Firt RPM of Sky Name: hellow Version: 0.1 Release: Vendor: PA soft(aguncn@ ...