Show that the following statements are equivalent:

(1). $A$ is positive.

(2). $A=B^*B$ for some $B$.

(3). $A=T^*T$ for some upper triangular $T$.

(4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive definite, then the factorization in (4) is unique. This is called the Cholesky decomposition of $A$.

Solution.  (1)$\ra$(2). Since $A$ is positive, and thus is Hermitian, $\exists$ unitary $Q$, $\st$ $$\bex A=Q\diag(\lm_1,\cdots,\lm_n)Q^*,\quad \lm_i\geq 0. \eex$$ Take $$\bex B=\diag\sex{\sqrt{\lm_1},\cdots,\sqrt{\lm_n}}Q, \eex$$ then $A=B^*B$.

(2)$\ra$(4). By QR decomposition, $\exists$ orthogonal $Q$, upper triangular $R$ with diagonals $\geq0$, $\st B=QR$. Thus $$\bex A=B^*B=R^*Q^*QR=R^*R. \eex$$

(4)$\ra$(1). First, $A$ is Hermitian. Second, $$\bex x^*Ax=x^*T^*Tx=\sen{Tx}^2\geq 0,\quad \forall\ x. \eex$$

(3)$\ra$(1). Just do as that in (4)$\ra$(1).

(1)$\ra$(3). Just use the QR decomposition.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. php QQ登录

    基本原理: 就是获取唯一的openid,此值只要与自己数据库表中的值对应,就说明是此用户, 没有,则说明是新用户,其实就是找对应关系,因为openid与QQ号是唯一对应关系 放置按钮: 如在首页 in ...

  2. 一些SVN 地址

    lockbox3 地址: https://svn.code.sf.net/p/tplockbox/code/trunc indy10 地址:https://svn.atozed.com:444/svn ...

  3. RasAPI函数实现PPPOE拨号

    unit uDial; interface uses Windows,Messages, SysUtils, Ras;// Classes; var //EntryName,UserName,Pass ...

  4. linux之vim编辑器

    Vi简介1. Vi是一种广泛存在于各种UNIX和Linux系统中的文本编辑程序.2. Vi不是排版程序,只是一个纯粹的文本编辑程序.3. Vi是全屏幕文本编辑器,它没有菜单,只有命令.4. Vi不是基 ...

  5. 【spring配置】 一组配置文件引出的问题

    applicationContext.xml: <?xml version="1.0" encoding="UTF-8"?> <beans x ...

  6. CGRectOffset与CGRectInset的计算公式

    (1)CGRectInset CGRect CGRectInset ( CGRect rect, CGFloat dx, CGFloat dy ); 该结构体的应用是以原rect为中心,再参考dx,d ...

  7. ExpressionTree——让反射性能向硬编码看齐

    缘起 最近又换了工作.然后开心是以后又能比较频繁的关注博客园了.办离职手续的这一个月梳理了下近一年自己写的东西,然后就有了此文以及附带的代码. 反射 关于反射,窃以为,他只是比较慢.在这个前提下,个人 ...

  8. 如何在Ubuntu Unity上修改应用程序图标

    转自如何在Ubuntu Unity上修改应用程序图标 这篇文章将教大家在Ubuntu Unity上修改应用程序图标,这个教程适合于Ubuntu 14.04, Ubuntu 13.10, Ubuntu ...

  9. 0xc0000428 winload.exe无法验证其数字签名的解决方法

    只要把windows/system32/boot中的winload.exe复制到windows/system32中替换即可!! 只有启动画面会有变化,可以使用魔方等软件进行修复,恢复到之前的样子

  10. Firefly 配置说明

    下图一一个典型的config.json的配置:配置中主要包括四个部分,master,servers,db,memcached.master用来定义master的端口,servers用来定义各个服务器中 ...