Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
 
Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2
Case 2: 1

大概题义就是要在x轴上放圆心,使得放最少的圆可以把所有点覆盖,输出圆的个数

#include <iostream>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
#define Maxn 10010

struct Node{
    double a,b;
}A[Maxn];

bool cmp(Node a,Node b){
    if(a.a != b.a){
        return a.a < b.a;
    }else{
        return a.b < b.b;
    }
}

double wenbao(double R,double high){
    return sqrt( pow(R,2.0) - pow(high,2.0) );
}

int main(){
    int N;
    double R;
    double a,b;
    int count = 1;
    while(cin >> N >> R,N+R){
        bool flag = true;
        for(int i = 0; i < N; i++){
            // cin >> a >> b;
            scanf("%lf%lf",&a,&b);//用scanf,否则会超时
            if(fabs(b) > R){
                flag = false;
            }else{
                double temp = wenbao(R,b);
                A[i].a = a - temp;
                A[i].b = a + temp;
            }
        }
        sort(A,A+N,cmp);
        Node p = A[0];
        int cnt = 1;
        for(int i = 1; i < N; i++){
            if(A[i].a > p.b){
                cnt++;
                p = A[i];
            }else if(A[i].b < p.b){//请仔细思考
                p = A[i];
            }
        }
        if(flag){
            printf("Case %d: %d\n",count++,cnt);
        }else{
            printf("Case %d: -1\n",count++);
        }
    }
}

  

poj 1328贪心的更多相关文章

  1. poj 1328 贪心

    /* 贪心.... 处理处每个点按照最大距离在x轴上的映射 然后我们就有了一些线段 目的是选取尽量少的点 使得每个线段内都有点出现 我们按照左端点排序 然后逐一处理 假设第一个雷达安在第一个线段的右端 ...

  2. 贪心 POJ 1328 Radar Installation

    题目地址:http://poj.org/problem?id=1328 /* 贪心 (转载)题意:有一条海岸线,在海岸线上方是大海,海中有一些岛屿, 这些岛的位置已知,海岸线上有雷达,雷达的覆盖半径知 ...

  3. POJ 1328 Radar Installation 贪心 A

    POJ 1328 Radar Installation https://vjudge.net/problem/POJ-1328 题目: Assume the coasting is an infini ...

  4. POJ 1328 Radar Installation【贪心】

    POJ 1328 题意: 将一条海岸线看成X轴,X轴上面是大海,海上有若干岛屿,给出雷达的覆盖半径和岛屿的位置,要求在海岸线上建雷达,在雷达能够覆盖全部岛屿情况下,求雷达的最少使用量. 分析: 贪心法 ...

  5. poj 1328 Radar Installation (简单的贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42925   Accepted: 94 ...

  6. 贪心问题:区间覆盖 POJ 1328 Rader Installation

    题目:http://poj.org/problem?id=1328 题意:给定海岛个数,雷达半径,输入各个海岛坐标,求能覆盖所有海岛的最少雷达数 题解: 1. 贪心的区间覆盖问题,尽量让每个雷达覆盖更 ...

  7. POJ 1328 Radar Installation 贪心 难度:1

    http://poj.org/problem?id=1328 思路: 1.肯定y大于d的情况下答案为-1,其他时候必定有非负整数解 2.x,y同时考虑是较为麻烦的,想办法消掉y,用d^2-y^2获得圆 ...

  8. poj 1328 Radar Installation(贪心)

    题目:http://poj.org/problem?id=1328   题意:建立一个平面坐标,x轴上方是海洋,x轴下方是陆地.在海上有n个小岛,每个小岛看做一个点.然后在x轴上有雷达,雷达能覆盖的范 ...

  9. poj 1328 Radar Installatio【贪心】

    题目地址:http://poj.org/problem?id=1328 Sample Input 3 2 1 2 -3 1 2 1 1 2 0 2 0 0 Sample Output Case 1: ...

随机推荐

  1. deep learning 学习资料

    http://deeplearning.net/tutorial/lenet.html

  2. 线性回顾-generalize issue

    Ein的平均,Eout的平均 用这个平均来justify linear regresssion能够用的很好 noise level 资料里有多少的杂讯 等一下要证明的事情 predictions + ...

  3. ASP.NET中扩展FileUpload的上传文件的容量

    ASP.NET中扩展FileUpload只能上传小的文件,大小在4MB以内的.如果是上传大一点的图片类的可以在web.config里面扩展一下大小,代码如下 <system.web> &l ...

  4. jQuery 插件写法

    一.jQuery插件的类型 1. jQuery方法 很大一部分的jQuery插件都是这种类型,由于此类插件是将对象方法封装起来,在jQuery选择器获取jQuery对象过程中进行操作,从而发挥jQue ...

  5. 关于script,first,second,third=argv运行出错的问题

    from sys import argv input(argv) #python自带的IDLE直接执行不能提供命令行参数 script,first,second,third=argv print(&q ...

  6. 前端图片预览,上传前预览,兼容IE7、8、9、10、11,Firefox,Chrome(学习到的知识)

    文章地址:http://www.cnblogs.com/rubylouvre/p/4597344.html 一.window.URL 在Chrome中,window.URL和window.webkit ...

  7. IIs工作原理

    http://www.cnblogs.com/szhy222/archive/2008/07/14/1242576.html 问题: HTTP.SYS 的内置驱动程序 IIS 工作者进程

  8. ios7新特性1-UI变化、UIKit动态行为支持与Text Kit新接口

    iOS 7.0新特性1 iOS 7的UI经过了重新设计.另外,iOS7中引入了新的动画系统,便于创建2D和2.5D的游戏.多任务支持提升,点对点通讯以及其他重要的特征使iOS7相对于以往的SDK来说发 ...

  9. Spring整合CXF,发布RSETful 风格WebService

    原文地址:http://www.cnblogs.com/hoojo/archive/2012/07/23/2605219.html 这篇文章是承接之前CXF整合Spring的这个项目示例的延伸,所以有 ...

  10. Keil C中全局变量的使用

    在KEIL C中,有多个源文件使用到全局变量时,可以在一个源文件中定义全局变量,在另外的源文件中用extern 声明该变量,说明该变量定义在别的文件中,将其作用域扩展到此文件. 例如:有以下两个源文件 ...