题面

看起来很水,然而不会DP的蒟蒻并不会做,PoPoqqq orz

设$f[i][j]$表示当前在第$i$个点和第$i+1$个点之间查票,已经查了$j$次的最大收益。然后就是那种很常见的枚举前一个结尾的转移,主要是贡献的求法,从$x$到$y$的贡献是$val[(x+1,y+1)][(y,n)]$(二维前缀和一下)。对于方案就在更新时记录上一个结尾即可

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,K=;
int fsum[N][N],dp[N][K],las[N][K],outp[K];
int n,k,ans,cnt,pos;
int main ()
{
scanf("%d%d",&n,&k);
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
scanf("%d",&fsum[i][j]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
fsum[i][j]+=fsum[i-][j]+fsum[i][j-]-fsum[i-][j-];
memset(dp,0xcf,sizeof dp),dp[][]=;
for(int i=;i<n;i++)
for(int j=;j<=k;j++)
for(int h=;h<i;h++)
{
int tmp=fsum[i][n]-fsum[h][n]-fsum[i][i]+fsum[h][i];
if(dp[h][j-]+tmp>dp[i][j]) {dp[i][j]=dp[h][j-]+tmp; las[i][j]=h;}
}
for(int i=;i<n;i++)
if(dp[i][k]>ans) ans=dp[i][k],pos=i;
while(k) outp[++cnt]=pos,pos=las[pos][k--];
sort(outp+,outp++cnt);
for(int i=;i<=cnt;i++)
printf("%d ",outp[i]);
return ;
}

解题:POI 2009 Ticket Inspector的更多相关文章

  1. 解题:POI 2009 Fire Extinguishers

    题面 洛谷数据非常水,建议去bzoj 我第一眼一看这不是那个POI2011的升级版吗(明明这个是2009年的,应该说那个是这个的弱化版,果然思想差不多. 因为$k$很小,可以考虑每个间隔距离来转移.我 ...

  2. 解题:POI 2009 TAB

    题面 这也算是个套路题(算吗)?发现换来换去每行每列数的组成是不变的,那么就把每行每列拎出来哈希一下,复杂度$O(Tn^2log$ $n)$有点卡时=.=. 然而正解似乎不需要哈希,就像这样↓ ;i& ...

  3. 解题:POI 2009 Lyz

    题面 板板讲的霍尔定理 霍尔定理:一张二分图有完全匹配的充要条件是对于任$i$个左部点都有至少$i$个右部点与它们相邻.放在这个题里就是说显然最容易使得鞋不够的情况是一段连续的人,那就维护一下最大子段 ...

  4. [POI 2009]Lyz

    Description 题库链接 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋.有 \(m\ ...

  5. 【BZOJ 1115】【POI 2009】石子游戏Kam

    http://www.lydsy.com/JudgeOnline/problem.php?id=1115 差分后变成阶梯博弈. #include<cstdio> #include<c ...

  6. 洛谷 P3486 [POI2009]KON-Ticket Inspector

    P3486 [POI2009]KON-Ticket Inspector 题目描述 Byteasar works as a ticket inspector in a Byteotian Nationa ...

  7. [洛谷P3486]POI2009 KON-Ticket Inspector

    问题描述 Byteasar works as a ticket inspector in a Byteotian National Railways (BNR) express train that ...

  8. 【Nim 游戏】 学习笔记

    前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...

  9. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

随机推荐

  1. spring-framework-reference(5.1.1.RELEASE)中文版——Core部分

    前言 最近在学习Spring框架,在学习的同时,借助有道翻译,整理翻译了部分文档,由于尚在学习当中,所以该篇文章将会定时更新,目标在一个月左右时间翻译完全部版本. 虽然大部分内容为翻译,但是其中可能会 ...

  2. 分享一篇IBN(Intent-based networking)调研报告

    IBN调研报告 背景 SDN(Software-defined network):最大特点在于具有松耦合的控制平面与数据平面.支持集中化的网络状态控制.实现底层网络设施对上层应用的透明.具有灵活的软件 ...

  3. VMware两台虚拟机之间文件共享

    虚拟机A的文件拷贝到虚拟机B scp[参数][原路径][目标路径] eg: scp -r root@192.168.0.172:/home/rookie/下载/ /home/rooookie/下载/ ...

  4. python-python爬取豆果网(菜谱信息)

    #-*- coding = utf-8 -*- #获取豆果网图片 import io from bs4 import BeautifulSoup import requests #爬取菜谱的地址 ur ...

  5. dmesg命令详解

    基础命令学习目录 http://linux.cn/article-3587-1.html dmesg 命令的使用范例 下面我们展示一些最负盛名的‘dmesg’命令工具以及其实际使用举例.‘dmesg’ ...

  6. Set up classpath in Eclipse

    On Eclipse main window Right click on .java file-> Run As -> Run Configurations... On Run Conf ...

  7. 为什么每次进入命令都要重新source /etc/profile 才能生效?

    https://segmentfault.com/q/1010000005981201

  8. 奔跑吧DKY——团队Scrum冲刺阶段-Day 6

    今日完成任务 谭鑫:制作相应动画人物,并实现人物动画 黄宇塘:制作相应动画人物,并实现人物动画,制作背景图 赵晓海:制作相应动画人物,并实现人物动画 方艺雯:制作相应动画人物,并实现人物动画,编写博客 ...

  9. Node.js记录

    在智能社上听了一些关于node.js的视频,总结一小部分内容,都是总结老师讲的知识点,并且也是在不断学习的过程,所以会不断更新.也是为了怕自己遗忘一些知识点,同时现今没有什么项目可以让我去真正实践,这 ...

  10. 标头 header()函数的用法

    头 (header) 是服务器以 HTTP 协议传 HTML 资料到浏览器前所送出的字串,在标头与 HTML 文件之间尚需空一行分隔. 范例一: 本例使浏览器重定向到 PHP 的官方网站. <? ...