题面

看起来很水,然而不会DP的蒟蒻并不会做,PoPoqqq orz

设$f[i][j]$表示当前在第$i$个点和第$i+1$个点之间查票,已经查了$j$次的最大收益。然后就是那种很常见的枚举前一个结尾的转移,主要是贡献的求法,从$x$到$y$的贡献是$val[(x+1,y+1)][(y,n)]$(二维前缀和一下)。对于方案就在更新时记录上一个结尾即可

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,K=;
int fsum[N][N],dp[N][K],las[N][K],outp[K];
int n,k,ans,cnt,pos;
int main ()
{
scanf("%d%d",&n,&k);
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
scanf("%d",&fsum[i][j]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
fsum[i][j]+=fsum[i-][j]+fsum[i][j-]-fsum[i-][j-];
memset(dp,0xcf,sizeof dp),dp[][]=;
for(int i=;i<n;i++)
for(int j=;j<=k;j++)
for(int h=;h<i;h++)
{
int tmp=fsum[i][n]-fsum[h][n]-fsum[i][i]+fsum[h][i];
if(dp[h][j-]+tmp>dp[i][j]) {dp[i][j]=dp[h][j-]+tmp; las[i][j]=h;}
}
for(int i=;i<n;i++)
if(dp[i][k]>ans) ans=dp[i][k],pos=i;
while(k) outp[++cnt]=pos,pos=las[pos][k--];
sort(outp+,outp++cnt);
for(int i=;i<=cnt;i++)
printf("%d ",outp[i]);
return ;
}

解题:POI 2009 Ticket Inspector的更多相关文章

  1. 解题:POI 2009 Fire Extinguishers

    题面 洛谷数据非常水,建议去bzoj 我第一眼一看这不是那个POI2011的升级版吗(明明这个是2009年的,应该说那个是这个的弱化版,果然思想差不多. 因为$k$很小,可以考虑每个间隔距离来转移.我 ...

  2. 解题:POI 2009 TAB

    题面 这也算是个套路题(算吗)?发现换来换去每行每列数的组成是不变的,那么就把每行每列拎出来哈希一下,复杂度$O(Tn^2log$ $n)$有点卡时=.=. 然而正解似乎不需要哈希,就像这样↓ ;i& ...

  3. 解题:POI 2009 Lyz

    题面 板板讲的霍尔定理 霍尔定理:一张二分图有完全匹配的充要条件是对于任$i$个左部点都有至少$i$个右部点与它们相邻.放在这个题里就是说显然最容易使得鞋不够的情况是一段连续的人,那就维护一下最大子段 ...

  4. [POI 2009]Lyz

    Description 题库链接 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋.有 \(m\ ...

  5. 【BZOJ 1115】【POI 2009】石子游戏Kam

    http://www.lydsy.com/JudgeOnline/problem.php?id=1115 差分后变成阶梯博弈. #include<cstdio> #include<c ...

  6. 洛谷 P3486 [POI2009]KON-Ticket Inspector

    P3486 [POI2009]KON-Ticket Inspector 题目描述 Byteasar works as a ticket inspector in a Byteotian Nationa ...

  7. [洛谷P3486]POI2009 KON-Ticket Inspector

    问题描述 Byteasar works as a ticket inspector in a Byteotian National Railways (BNR) express train that ...

  8. 【Nim 游戏】 学习笔记

    前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...

  9. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

随机推荐

  1. ats 分层缓存

    了解缓存层次结构 缓存层次结构由彼此通信的缓存级别组成.ats支持多种类型的缓存层次结构. 所有缓存层次结构都识别父和子的概念. 父缓存是层次结构中较高的缓存, ats可以 将请求转发到该缓存.子缓存 ...

  2. python打包成exe文件

    在cmd命令提示符窗口中输入pip install pyinstaller(在python3的环境下,假如不能安装的话,用pip3 install pyinstaller指令) 使用指令pyinsta ...

  3. kali vmtools 不能复制粘贴解决方法(绝对实用)

    朋友问起怎么vm kali 2019怎么不能复制了,而且网上的方法大多不适合.我就在这儿记录一笔吧,方便大家. 之前发现最新kali复制粘贴不能用,后来发现一个奇妙的套路,不是共享文件夹.只需要把文件 ...

  4. 前端_html

    目录 HTML介绍 标签说明 常用标签 <!DOCTYPE>标签 <head>内常用标签 <body>内常用标签 特殊字符 其他:各种各样的标签 HTML的规范 H ...

  5. Python脚本文件(.py)打包为可执行文件(.exe)即避免命令行中包含Python解释器

      在最近的软件工程作业中用到了将Python脚本转化为exe文件这一过程,网上各种博客介绍了很多,有些东西都不完全,我也是综合了很多种方法最后才实现的,我就把这些整理出来,希望可以帮到大家~ 一.环 ...

  6. 【Alpha】特殊情况通知

    由于我本人(SivilTaram)连续工作两周半,压力过大,今早出现心绞痛,故请求休假一天.今日不开Scrum Meeting,其余队员团队项目正常进行.

  7. 07慕课网《进击Node.js基础(一)》HTTP小爬虫

    获取HTML页面 var http = require('http') var url='http://www.imooc.com/learn/348' http.get(url,function(r ...

  8. IIs8 svc

    IIS8中添加WCF支持几种方法小结[图文] 方法一 最近在做Silverlight,Windows Phone应用移植到Windows 8平台,在IIS8中测试一些传统WCF服务应用,发现IIS8不 ...

  9. Java 反射 不定参数bug

    遇到的第一个关于反射的bug:java.lang.IllegalArgumentException: wrong number of arguments的问题解析如下: 1.错误bug wrong n ...

  10. 剑指offer :从尾到头打印链表

    题目描述: 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 解题思路: 链表的遍历只能从头向尾进行,要从尾到头输出,考虑用栈.先从头到尾遍历一次链表,同时将值进栈,再清空栈,同时将值 ...