http://poj.org/problem?id=3155

最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一个是选边必须选其两边的点,一个是选正权点必须选其相邻的负权点。

那么就可以把最大密度子图用最大权闭合图相近的方式写,二分+网络流就可以了,网络流建图方法可以参考我上一篇博客。

https://blog.csdn.net/power721/article/details/6781518 也就是该博客的第一种做法,不写第二种因为我懒,over。

顺便我的写法设置的精度单位(随便叫了个名字,领会精神)是1.0/n/n,有自环的话有点不靠谱,1e-4什么的可能逻辑上更合理一点。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
using namespace std;
#define LL long long
const int maxn=;
const double minf=1e14;
const double eps=1.0/1e16;
int n,m,s,t;
LL val[maxn]={};
int a[maxn][]={};
struct nod{
int y,next;double v;
}e[maxn*]; int head[maxn],tot=;
queue<int>q; int dep[maxn]={};
int zz[maxn]={},tly=,vis[maxn]={};
inline void init(int x,int y,double v){
e[++tot].y=y;e[tot].v=v;e[tot].next=head[x];head[x]=tot;
}
bool dfs(){
memset(dep,,sizeof(dep));
q.push(s);dep[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=head[x];i;i=e[i].next){
if(e[i].v>eps&&!dep[e[i].y]){
dep[e[i].y]=dep[x]+;
q.push(e[i].y);
}
}
}
return dep[t];
}
double dfs1(int x,double fc){
if(x==t){
return fc;
}
double he=,z;
for(int i=head[x];i;i=e[i].next){
if(dep[x]+==dep[e[i].y]){
z=dfs1(e[i].y,min(fc-he,e[i].v));
he+=z;e[i].v-=z;e[i^].v+=z;
if(fc-he<eps)break;
}
}
return he;
}
bool check(double v){
memset(head,,sizeof(head));tot=;
for(int i=;i<=m;i++){
init(n+i,a[i][],minf);init(a[i][],n+i,);
init(n+i,a[i][],minf);init(a[i][],n+i,);
init(s,n+i,1.0);init(n+i,s,);
}
for(int i=;i<=n;i++){init(i,t,v);init(t,i,);}
while(dfs())dfs1(s,minf);
for(int i=;i<=m;i++){
int z=(i-)*++;
if(e[z].v>eps){
return ;
}
}
return ;
}
void dfs2(int x){
if(x==t)return;
if(x<=n)zz[++tly]=x;
vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(vis[e[i].y]||e[i].v<eps)continue;
dfs2(e[i].y);
}
}
int main(){
scanf("%d%d",&n,&m);s=n+m+;t=s+;
if(n==){ printf("0\n");return ; }
if(m==){ printf("1\n1\n");return ; }
for(int i=;i<=m;i++){scanf("%d%d",&a[i][],&a[i][]);}
double l=0.5,r=m,mid;r=max(r,1.0);
double mi=1.0/(double)n/(double)n;
while(r-l>mi){
mid=(l+r)/;
if(check(mid))l=mid;
else r=mid;
}
check(l-mi);
dfs2(s);
printf("%d\n",tly);sort(zz+,zz++tly);
for(int i=;i<=tly;i++)printf("%d\n",zz[i]);
return ;
}

POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分的更多相关文章

  1. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  2. BZOJ 4873 寿司餐厅(最大权闭合图 网络流)

    寿司餐厅 时间限制: 1 Sec  内存限制: 512 MB提交: 6  解决: 3[提交][状态][讨论版] 题目描述 Kiana 最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序 ...

  3. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

  4. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  5. poj 2987(最大权闭合图+割边最少)

    题目链接:http://poj.org/problem?id=2987 思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益:从每个负收益点向汇点t连边,容量为收益的相反数:对于i是 ...

  6. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  7. POJ 2987:Firing(最大权闭合图)

    http://poj.org/problem?id=2987 题意:有公司要裁员,每裁一个人可以得到收益(有正有负),而且如果裁掉的这个人有党羽的话,必须将这个人的所有党羽都裁除,问最少的裁员人数是多 ...

  8. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  9. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

随机推荐

  1. php Only variables should be passed by reference 报错问题

    这个错误是变量引用引起的非致命错误,可修改php.ini文件的error_reporting = E_ALL & E_NOTICE 使其屏蔽此错误

  2. 移动端测试===PROC系列之---/proc/pid/stat 如何准确取cpu的值【转】

         /proc/ /stat 包含了所有CPU活跃的信息,该文件中的所有值都是从系统启动开始累计到当前时刻. [root@localhost ~]# cat /proc/6873/stat 68 ...

  3. nand flash 的oob 及坏块管理

    0.NAND的操作管理方式      NAND FLASH的管理方式:以三星FLASH为例,一片Nand flash为一个设备(device),1 (Device) = xxxx (Blocks),1 ...

  4. [转载]Windows服务编写原理及探讨(4)

    (四)一些问题的讨论 前面几章的内容都是服务的一些通用的编写原理,但里面隐含着一些问题,编写简单的服务时看不出来,但遇到复杂的应用就会出现一些问题,所以本章就是用来分析.解决这些问题的,适用于高级应用 ...

  5. python基础-实现进度条功能,for和yield实现

    实现进度条功能 方法一:简单FOR实现打印进度条功能 for i in range(10): print("#",end="",flush=True) time ...

  6. irport报表,把数字金额转换成大写人民币金额

    1.编写oracle函数 CREATE OR REPLACE Function MoneyToChinese(Money In Number) Return Varchar2 Is strYuan ) ...

  7. Zookeeper安装以及配置说明(三)

    Zookeeper的安装和配置非常的简单,既可以配置成单机模式,也可以配置成集群模式.如下图所示: 下面将分别进行介绍: 单机模式 下载最新稳定版本zookeeper的安装包之后(看第一篇博文), 解 ...

  8. 20165203《Java程序设计》第四周学习总结

    教材学习内容总结 第5章 子类与继承 子类的继承性 子类和父类在同一包中的继承性:子类继承父类中不是private的成员变量和方法作为自己的成员变量和方法 子类和父类不在同一包中的继承性:子类只继承父 ...

  9. gif处理

    UleadGIFAnimator-v5.05破解版 网盘地址:https://pan.baidu.com/s/1bpf6iVP 2017-02-19  10:39:58

  10. OA项目Ioc DI(二)

    依赖注入:属性和构造函数的注入 一个简单的Demo: IUserInfoDal接口: public interface IUserInfoDal { void Show(); string Name ...