首先有朴素的\(O(n^2)\)想法

首先枚举断边,之后对于断边之后的两棵子树求出直径

考虑优化这个朴素的想法

考虑换根\(dp\)

具体而言,首先求出\(f[i], fs[i]\)表示\(i\)号点向下的最长链以及\(i\)号子树内部最长的直径

并且在求出\(g[i]\)表示\(fa[i]\)在\(i\)号节点子树外的最长链

\(gs[i]\)表示\(i\)号节点子树外的直径

对于所有的\(fs[i] * gs[i]\)取\(max\)即为答案


首先一遍\(dfs\)把\(f, fs\)求出来

考虑怎么求\(gs[o]\),有以下几种可能

  • 一条\(fa[o]\)引申出去的链 + \(fa[o]\) 除了\(o\)子树以外的最长链

  • \(gs[fa]\)

  • 两条\(fa[o]\)除了\(o\)子树以外的链的和

用前缀和后缀来做到删除


#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define tpr template <typename ra>
tpr inline void cmin(ra &a, ra b) { if(a > b) a = b; }
tpr inline void cmax(ra &a, ra b) { if(a < b) a = b; } #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} const int sid = 200050; ll ans;
int n, cnp;
int cap[sid], nxt[sid], node[sid]; inline void addedge(int u, int v) {
nxt[++ cnp] = cap[u]; cap[u] = cnp; node[cnp] = v;
} int f[sid], fs[sid];
int g[sid], gs[sid], q[sid], ps[sid], ss[sid]; #define cur node[i]
void dfs1(int o, int fa) {
for(int i = cap[o]; i; i = nxt[i])
if(cur != fa) {
dfs1(cur, o);
cmax(fs[o], fs[cur]);
cmax(fs[o], f[cur] + f[o] + 1);
cmax(f[o], f[cur] + 1);
}
} void dfs2(int o, int fa) { if(!fa) g[o] = -1; int tot = 0;
int sx = 0, mx = 0, px = 0; for(int i = cap[o]; i; i = nxt[i])
if(cur != fa) q[++ tot] = cur; rep(i, 1, tot + 1) ps[i] = ss[i] = 0; rep(i, 1, tot) {
int p = q[i];
cmax(g[p], g[o] + 1);
cmax(g[p], ps[i - 1]);
ps[i] = max(ps[i - 1], f[p] + 1);
} drep(i, tot, 1) {
int p = q[i];
cmax(g[p], ss[i + 1]);
ss[i] = max(ss[i + 1], f[p] + 1);
} rep(i, 1, tot) {
int p = q[i];
cmax(gs[p], ps[i - 1] + ss[i + 1]);
cmax(gs[p], gs[o]);
cmax(gs[p], g[o] + 1 + ps[i - 1]);
cmax(gs[p], g[o] + 1 + ss[i + 1]);
} rep(i, 1, tot) {
int p = q[i];
cmax(gs[p], mx + sx);
cmax(gs[p], px); cmax(px, fs[p]);
if(f[p] + 1 >= mx) sx = mx, mx = f[p] + 1;
else if(f[p] + 1 >= sx) sx = f[p] + 1;
} mx = sx = px = 0; drep(i, tot, 1) {
int p = q[i];
cmax(gs[p], mx + sx);
cmax(gs[p], px); cmax(px, fs[p]);
if(f[p] + 1 >= mx) sx = mx, mx = f[p] + 1;
else if(f[p] + 1 >= sx) sx = f[p] + 1;
} for(int i = cap[o]; i; i = nxt[i])
if(cur != fa) {
cmax(ans, 1ll * fs[cur] * gs[cur]);
dfs2(cur, o);
}
} int main() {
n = read();
rep(i, 2, n) {
int u = read(), v =read();
addedge(u, v); addedge(v, u);
}
dfs1(1, 0); dfs2(1, 0);
printf("%lld\n", ans);
return 0;
}

SPOJ6717 Two Paths 树形dp的更多相关文章

  1. Codeforces Beta Round #14 (Div. 2) D. Two Paths 树形dp

    D. Two Paths 题目连接: http://codeforces.com/contest/14/problem/D Description As you know, Bob's brother ...

  2. 牛客第八场 C-counting paths 树形dp计数

    题目地址 题意 给你一颗树 初始点颜色全部为白色 对于每一个满足要求一的点集s f(s)的定义为先把点集内的点染黑 满足要求二的路径集合数量 要求一为两两黑点之间不能出现白色的点 要求二为将这个路径集 ...

  3. Codeforces Beta Round #14 (Div. 2) Two Paths (树形DP)

    Two Paths time limit per test 2 seconds memory limit per test 64 megabytes input standard input outp ...

  4. HDU4003Find Metal Mineral[树形DP 分组背包]

    Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Other ...

  5. CF 337D Book of Evil 树形DP 好题

    Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains n se ...

  6. hdu 4003 Find Metal Mineral 树形DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Humans have discovered a kind of new metal miner ...

  7. poj3162(树形dp+优先队列)

    Walking Race Time Limit: 10000MS   Memory Limit: 131072K Total Submissions: 5409   Accepted: 1371 Ca ...

  8. POJ 3162.Walking Race 树形dp 树的直径

    Walking Race Time Limit: 10000MS   Memory Limit: 131072K Total Submissions: 4123   Accepted: 1029 Ca ...

  9. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

随机推荐

  1. 在Linode VPS上搭建最新版Transmission

    在Linode VPS上搭建最新版Transmission 2015-09-16 by Hansen 原文链接:http://www.hansendong.me/archives/124.html 以 ...

  2. Halcon编程-基于形状特征的模板匹配

    halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配.      为了在右图中,定位图中的三 ...

  3. ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer::ComputeF21 (OpenCV 细节)

    ORB_SLAM2 计算 F21 的代码是这样的. cv::Mat Initializer::ComputeF21(const vector<cv::Point2f> &vP1,c ...

  4. rollup&&cube

    group by 擴展 rollup&&cube --按job分組計算不同job的匯總工資   SELECT job, SUM (sal)     FROM emp GROUP BY ...

  5. 2017-2018-2 20179205《网络攻防技术与实践》第十一周作业 SQL注入攻击与实践

    <网络攻防技术与实践>第十一周作业 SQL注入攻击与实践 1.研究缓冲区溢出的原理,至少针对两种数据库进行差异化研究 缓冲区溢出原理   在计算机内部,输入数据通常被存放在一个临时空间内, ...

  6. 一步一步搭建oracle 11gR2 rac+dg之环境准备(二)【转】

    一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之环境准备 (二) 一步一步搭建oracle 11gR2 rac+dg之环境准备 ...

  7. bzoj 1034 泡泡堂BNB

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1034 题解: 很明显的贪心,读过田忌赛马的典故就很容易能想出来,分成三种情况讨论: < ...

  8. 关于bcb调用动态库,contains invalid OMF record, type 0x21 (possibly COFF)问题

    今天用C++Builder6.0 调用三方lib文件时,编译的时候出现如下错误: “contains invalid OMF record, type 0x21 (possibly COFF)” 才知 ...

  9. python基础--hashlib模块

    hashlib模块用于加密操作,代替了md5和sha模块, 主要提供SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法. # -*- coding:utf-8 - ...

  10. bootstrap表单按回车会自动刷新页面的问题

    想给form表单增加回车自动提交的功能 $('#password').keydown(function(event){ if (event.keyCode == 13) $('#login').cli ...