【51Nod 1222】最小公倍数计数
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222
求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去\([1,a)\)中的个数。
&\sum_{i=1}^n\sum_{j=1}^n\left[\frac{ij}{(i,j)}\leq n\right]\\
=&\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{j=1}^{\left\lfloor\frac nd\right\rfloor}[(i,j)=1][ijd\leq n]\\
=&\sum_{d=1}^n\sum_{i=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{j=1}^{\left\lfloor\frac nd\right\rfloor}\sum_{d'|(i,j)}\mu(d')[ijd\leq n]\\
=&\sum_{d=1}^n\sum_{d'=1}^{\left\lfloor\frac nd\right\rfloor}\mu(d')\sum_{i=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\left[ijdd'^2\leq n\right]\\
=&\sum_{d'=1}^{\left\lfloor\sqrt n\right\rfloor}\mu(d')\sum_{d=1}^{\left\lfloor\frac n{d'}\right\rfloor}\sum_{i=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac n{dd'}\right\rfloor}\left[ijd\leq\left\lfloor\frac n{d'^2}\right\rfloor\right]\\
\end{aligned}
\]
枚举\(\left\lfloor\sqrt n\right\rfloor\)个\(d'\),对于每个\(d'\),先假定\(d\leq i\leq j\),枚举\(\left\lfloor\left(\frac n{d'}\right)^{\frac 13}\right\rfloor\)个\(d\),\(i\)再从\(d\)枚举到\(\left\lfloor\left(\frac n{dd'}\right)^{\frac 12}\right\rfloor\),最后计算\(j\)的个数,乘上一个排列数即可。
\(f(x)\)表示对每个\(d'\)计算的复杂度。
时间复杂度为\(O\left(\sum\limits_{d'=1}^{\left\lfloor\sqrt n\right\rfloor}f(d')\right)\)。
f(x)=&\int_{0}^{\left(\frac n{x^2}\right)^{\frac 13}}\left(\left(\frac n{x^2i}\right)^{\frac 12}-i\right)di\\
=&\left(\frac n{x^2}\right)^{\frac 12}\int_0^{\left(\frac n{x^2}\right)^{\frac 13}}i^{-\frac 12}di-\int_0^{\left(\frac n{x^2}\right)^{\frac 13}}idi\\
=&\left(\frac n{x^2}\right)^{\frac 12}\left(2\left({\left(\frac n{x^2}\right)^{\frac 13}}\right)^{\frac 12}-2\right)-\left(\frac 12\left({\left(\frac n{x^2}\right)^{\frac 13}}\right)^2\right)\\
=&\frac 34\left(\frac n{x^2}\right)^{\frac 23}-2\left(\frac n{x^2}\right)^{\frac 12}
\end{aligned}
\]
&O\left(\sum_{d'=1}^{\left\lfloor\sqrt n\right\rfloor}f(d')\right)\\
=&O\left(\int_0^{\sqrt n}\left(\frac n{x^2}\right)^{\frac 23}dx\right)\\
=&O\left(n^{\frac 23}\int_0^{\sqrt n}x^{-\frac 43}dx\right)\\
=&O\left(n^{\frac 23}\left(\left(-3\sqrt{n}^{-\frac 13}\right)-\left(-3\times0^{-\frac 13}\right)\right)\right)\\
=&O\left(3n^{\frac 23}-3n^{\frac 12}\right)\\
=&O\left(n^{\frac 23}\right)
\end{aligned}
\]
所以总时间复杂度为\(O\left(n^{\frac 23}\right)\),好神奇啊qwq
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int sq = 316228;
bool notp[sq + 1];
int mu[sq + 1], prime[sq], num = 0;
void Euler_shai() {
mu[1] = 1;
for (int i = 2; i <= sq; ++i) {
if (!notp[i]) prime[++num] = i, mu[i] = -1;
for (int j = 1; j <= num && prime[j] * i <= sq; ++j) {
notp[prime[j] * i] = true;
if (i % prime[j] == 0)
break;
mu[prime[j] * i] = -mu[i];
}
}
}
ll a, b;
ll cal(ll n) {
ll ret = 0;
for (int d = 1; 1ll * d * d <= n; ++d)
if (mu[d]) {
ll up = n / d / d, r = 0;
for (int i = 1; 1ll * i * i * i <= up; ++i) {
ll up2 = up / i;
r += (up2 / i - i) * 3 + 1;
for (int j = i + 1; 1ll * j * j <= up2; ++j)
r += (up2 / j - j) * 6 + 3;
}
mu[d] > 0 ? ret += r : ret -= r;
}
return (ret + n) >> 1;
}
int main() {
scanf("%lld%lld", &a, &b);
Euler_shai();
printf("%lld\n", cal(b) - cal(a - 1));
return 0;
}
【51Nod 1222】最小公倍数计数的更多相关文章
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- [51Nod 1222] - 最小公倍数计数 (..怎么说 枚举题?)
题面 求∑k=ab∑i=1k∑j=1i[lcm(i,j)==k]\large\sum_{k=a}^b\sum_{i=1}^k\sum_{j=1}^i[lcm(i,j)==k]k=a∑bi=1∑kj ...
- 51nod 1222 最小公倍数计数【莫比乌斯反演】
参考:https://www.cnblogs.com/SilverNebula/p/7045199.html 所是反演其实反演作用不大,又是一道做起来感觉诡异的题 转成前缀和相减的形式 \[ \sum ...
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
- 51nod 1682 中位数计数
1682 中位数计数基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均 ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51nod 1682 中位数计数(前缀和)
51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N] ...
- 51nod1222 最小公倍数计数
题目来源: Project Euler 基准时间限制:6 秒 空间限制:131072 KB 分值: 640 定义F(n)表示最小公倍数为n的二元组的数量. 即:如果存在两个数(二元组)X,Y(X & ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
随机推荐
- APScheduler API -- apscheduler.triggers.cron
apscheduler.triggers.cron API Trigger alias for add_job(): cron class apscheduler.triggers.cron.Cron ...
- CSS overscroll-behavior
overscroll-behavior新属性解决了在手机上弹出滚动的一些问题,具体内容查看网址:https://www.w3cplus.com/css/overscroll-behavior.html
- ggplot2使用初探
ggplot2已经成为了R语言中数据可视化的同义词, 这是一个强大的工具, 可以帮助我们制作优良的图表, 创造出令人吃惊的图片, 下面我们一起学习(本博文参考了知乎问题如何使用 ggplot2中黄宝臣 ...
- pyquery学习笔记
很早就听说了pyquery的强大.写了个简单的测试程序实验下. 思路是找个动态网页,先用PhantomJS加载,然后用PYQUERY解析. 1.随便找了个带表格的股票网页,里面有大量的股票数据,测试的 ...
- spark和hadoop比较
来源知乎 计算模型:hadoop-MapReduce,Spark-DAG(有向无环图)评注:经常有人说Spark就是内存版的MapReduce,实际上不是的.Spark使用的DAG计算模型可以有效的减 ...
- 可怕的线程上下文类装载器(TCCL)
在明天的 OSGi 2012 社区活动上,我将以"如何使你的类库在不依赖 OSGi 的情况下进行友好地 OSGi"为主题进行演讲.在演讲中我将会提及 Java 的线程上下文类加载器 ...
- apachebench对网站进行并发测试
,安装apache ,打开cmd进入apache安装目录的bin目录(有ab.exe) ,执行ab命令 格式:ab -n -c http://localhost:80/test/test.php 说明 ...
- **PHP错误Cannot use object of type stdClass as array in错误的
错误:将PHP对象类型当做了PHP数组 解决方法:用对象操作符-> 今天在PHP输出一个二维数组的时候,出现了“Fatal error: Cannot use object of type s ...
- require demo 记录备份
预览地址 http://127.0.0.1:8020/requireDemo/myNEW/index.html 注意 远程的 非模块的 empty: demo2
- flex布局防止被挤压 flex-shrink: 0
lex布局非常好用,但在开发过程中可能会碰到的一些坑 1.内容超出容器大致情况是:在一个设置了display:flex布局的大容器A中并排放置两个子容器,并且子容器设置flex:1,子容器中都有一个元 ...